
PROJECT REPORT

Peer-to-peer VPN solution for eduVPN
using WireGuard

February 10, 2024

Students:
Marijn Valks
15080129

Robin Slot
12654264

Institution:
SURF, GÉANT and DeiC

Institution supervisor:
Rogier Spoor, Jeroen Wijenbergh

and François Kooman

Course:
Security and Network Engineering

Abstract

eduVPN is a VPN solution for education and research institutions, offered by GÉANT
and co-developed by SURF and DeiC. It supports OpenVPN and WireGuard. Communica-
tion between two peers on the VPN is always relayed through the central server, following
the hub-and-spoke model. This introduces unwanted latency, and increases resource us-
age for the VPN server. In this research project, we will investigate ways of introducing
peer-to-peer connections into eduVPN’s WireGuard system. Peer-to-peer connections are
especially useful in combination with user-defined networks functionality, where an edu-
VPN user can create their own private networks with custom network prefixes and static
IP addresses for their devices.

6703 words PAGE 1 OF 31

PROJECT REPORT

1 Introduction

With more people working and collaborating remotely, the need for secure access to data
and easy collaboration has increased significantly. Without a physical network connecting
development servers and workstations, a virtual network is needed to securely tunnel traffic
over the internet.

The current eduVPN service provides VPN tunnels using OpenVPN or WireGuard. How-
ever, in this system the clients connect to a centralized server. Even when connecting to a
device close by, traffic has to be relayed via the centralized VPN server. Not only does this
unnecessarily increase latency and decreases possible throughput, such a server is costly to
operate and is a single point of failure. The client-server VPN model is traditionally more
designed to facilitate access to resources within one organization and is therefore less ideal
for facilitating collaboration between people from different organizations and institutions.
In recent years, the demand for collaboration between people from different organizations,
even internationally, has increased. A peer-to-peer VPN model would provide better scal-
ing options by connecting clients directly, making them independent of the performance of
central VPN servers.

Peer-to-peer VPN technology would enable users to create mesh networks where every
peer is directly connected. Only in the rare case where a peer-to-peer connection cannot be
made, a relay server can be used. We will research methods for establishing connections
between peers behind firewalls and NAT, examining their feasibility for integration into
eduVPN. This includes investigating different NAT types and evaluating the possibility of
employing hole punching to create peer-to-peer connections between them. The technique
of hole punching, which involves opening network ports on NAT devices, is studied for
reliable integration with WireGuard. In cases where hole punching is not feasible, a central
relay server is employed to seamlessly integrate into the existing eduVPN architecture.

1.1 Structure

The paper is structured as follows: In section 3, we discuss earlier relevant work. Section
4 covers essential background information about relevant topics that are crucial for under-
standing our research. The methodology section 5 highlights our methodology, including
an explanation of different NAT traversal techniques. The research results, along with a de-
scription of the technical workings of the newly developed solution, are examined in section
6, and the findings are discussed in section 7. Finally, section 8 presents the conclusion of
the findings and in section 9, some topics for future work are discussed.

2 Research question

2.1 Research Question

In the paper, we will answer the following research question: How to design a peer-to-peer
VPN solution for the current eduVPN infrastructure, using WireGuard? To answer this
question, we define the following sub-questions:

• How can WireGuard be made to establish connections using UDP hole punching, with-
out modifying WireGuard itself?

• How can WireGuard be made to establish connections via a relay server, without mod-
ifying WireGuard itself?

• What is the feasibility of each method of receiving UDP datagrams, as discussed in the
abstract?

Marijn Valks, Robin Slot PAGE 2 OF 31

PROJECT REPORT

2.2 Scope

The scope of the project will be limited in different aspects:

• The research is limited to the WireGuard VPN protocol. Altough the availability of var-
ious alternatives like Tinc, n2n, Tailscale/Headscale, Zerotier, and Nebula, the project
will exclusively rely on the WireGuard VPN protocol. The primary reason for this limi-
tation is that WireGuard is deeply integrated into eduVPN, and altering this integration
would require a substantial effort. Additionally, Aquina, an earlier intern, conducted
a comprehensive study on the integration of WireGuard into the eduVPN architec-
ture [1]. Lastly, the effectiveness of the WireGuard architecture has been proven,
considering an alternative VPN architecture would only be justified if the advantages
significantly outweigh the disadvantages.

• Client application development is beyond the project’s scope; The eduVPN team is re-
sponsible for developing user clients for various supported operating systems. This en-
compasses client authentication, logging, and configuration polling through the edu-
VPN portal. During the project’s finalization phase, the modified client configuration
will be transferred to SURF’s responsible team.

• WireGuard only supports UDP. The team behind eduVPN is experimenting with solu-
tions of encapsulating WireGuard traffic in TCP segments1, to support networks where
UDP is blocked. However, the current state of WireGuard in eduVPN depends on UDP.
In this research project, networks where UDP is blocked will not be considered.

3 Related work

Küthe conducted a comparison of various mesh VPN solutions, including Tinc, n2n,
Tailscale/Headscale, ZeroTier and Nebula [2]. Although the comparison provided valuable
insights into the solutions and their possibilities, none of them seamlessly integrates with
the current eduVPN architecture.

Tailscale presented a solution [3] for establishing a peer-to-peer network using Wire-
Guard and NAT-traversal in combination with a central coordination server. Headscale2 on
the other hand developed an open-source, self-hosted implementation of the Tailscale co-
ordination server. Although these solutions do use WireGuard as their authentication and
encryption protocol, they require a completely new eduVPN architecture (conflicting with
the project scope). Despite this, they do provide some valuable insights into their approach
using WireGuard as a protocol and using NAT-traversal [4] for building peer-to-peer mesh
networks.

WireGuard, as a communication protocol for providing lightweight encrypted VPN net-
works, is widely adopted and researched in various projects. However, these projects use
the WireGuard protocol as part of a large codebase. eduVPN on the other hand aims to use
WireGuard without modification, instead only providing a simple management daemon.
This is advantageous for maintainability and robustness.

Aquina, an earlier research intern at SURF [1] investigated eduVPN itself and how Wire-
Guard could be integrated. At that time, eduVPN only used OpenVPN to provide their
service. The paper explored the possibilities of enhancing eduVPN using WireGuard, but it
didn’t mention anything about a peer-to-peer solution.

4 Background

This section covers the necessary background information to understand the rest of the
paper.

1https://codeberg.org/eduVPN/proxyguard
2https://github.com/juanfont/headscale

Marijn Valks, Robin Slot PAGE 3 OF 31

https://codeberg.org/eduVPN/proxyguard
https://github.com/juanfont/headscale

PROJECT REPORT

4.1 Current eduVPN architecture

eduVPN currently employs a combination of OpenVPN and WireGuard. As OpenVPN is con-
sidered more of a legacy environment, it will not be further investigated during this research.
The reason for it to be considered legacy is the simplicity that comes with WireGuard, re-
sulting in a more lightweight solution compared to OpenVPN, making it faster and reducing
security risks. With a much smaller codebase, there is potentially a lower chance of security
implications.

The eduVPN hub-and-spoke model allows for the routing of all traffic through the VPN or
selectively routing specific traffic, supporting both IPv4 and IPv6. The client itself is available
for Windows, macOS, Linux, iOS, and Android, each having its own codebase. eduVPN users
can either pull a WireGuard configuration from the web portal or use an eduVPN client to
connect. For a more comprehensive list of features and access to the complete eduVPN
codebase, please refer to the eduVPN documentation [5].

4.2 WireGuard architecture

WireGuard is an open-source communication protocol designed to create lightweight en-
crypted VPN networks. It requires minimal user configuration and therefore is easy to im-
plement. Each peer in the network is identified by a key pair. Users are responsible for
exchanging their public key with other peers and configuring peer endpoints with the cor-
rect address. WireGuard utilizes advanced cryptographic algorithms, including ChaCha20

for symmetric encryption, Poly1305 hash function for authentication, Curve25519 for the
Diffie–Hellman key agreement protocol, and SipHash24 & BLAKE2 for private key manage-
ment[6]. This combined with WireGuard’s great performance and minimal codebase, makes
WireGuard an ideal protocol for peer-to-peer solutions.

To establish a WireGuard connection between two peers, one must be reachable via a
known address and port, while the other client may be roaming. If a client is behind NAT,
WireGuard can periodically send keepalive messages to ensure mappings are persisted by
stateful firewalls and NAT devices.

4.3 Different NAT types

When constructing a peer-to-peer solution, a thorough understanding of various types of
NATs is crucial. RFC 3489 (STUN) categorizes four distinct NAT variations [7]:

• Full cone NAT, also referred to as 1:1 NAT or static NAT, consistently maps the same
internal IP address and port for all outgoing requests to a corresponding external IP
address and port. This ensures that all incoming traffic from external hosts can use
this mapped IP address and port to forward the traffic to an internal host.

• Address-restricted cone NAT is restricted to a specific fixed IP, as indicated by the
name. It requires an internal host to send a packet from its IP address and port to a
fixed external IP address with a corresponding port before permitting any incoming
packets from that same fixed external host.

• Port-restricted cone NAT operates on the same principle as address-restricted cone
NAT, with the additional requirement of responses being from the same source port.
Any request from an internal IP and port is mapped to a unique external IP address
and port. Incoming packets are only permitted if sent from an external host port that
previously received a packet on that specific port.

• Symmetric NAT uniquely maps the internal IP address and port to an external IP
address and port for each distinct destination. This means that the packet’s source IP
and port are determined by the destination IP. Even if the same internal IP address and
source send out a packet, a different mapping will be used for each new destination
address. Symmetric NAT is incompatible with UDP hole punching [7].

Marijn Valks, Robin Slot PAGE 4 OF 31

PROJECT REPORT

RFC 4787 categorizes similar variations of NAT:

• Endpoint-Independent Mapping (EIM) is for devices that choose external source
ports and addresses independently of the destination address (i.e., endpoint). In RFC
3489 terms, symmetric NAT is an example of a NAT that is not EIM, it is endpoint
dependent.

• Address-Dependent Mapping (ADM) is comparable to address-restricted cone NAT
(if EIM). ADM NAT can be EIM-NAT or not EIM-NAT.

• Address and Port-Dependent Mapping (APDM) is comparable to port-restricted cone
NAT (if EIM). APDM NAT can be EIM-NAT or not EIM-NAT.

In this research paper, full cone NAT, address-restricted cone NAT, and port-restricted cone
NAT are referred to as Endpoint-Independent Mapping NAT (EIM-NAT), adhering to the
naming convention observed in [8, §2.9].

RFC 4787 states that NAT devices must use endpoint-independent mappings, i.e. not
operate like symmetric NAT. The authors state that symmetric NAT has no security advan-
tages, and has the large disadvantage of preventing peer-to-peer communication using UDP
hole punching [9, § 4.1]. Still, there are many symmetric NAT devices operating in the field.
There is limited data on the number of users behind symmetric NAT, where hole punching is
not possible. In [10], the frequency of symmetric NAT is estimated to be around 8%, mean-
ing that in 0.6% of cases the relay server would be required, assuming UDP is permitted.
Halkes and Pouwelse [11] estimates that around 85% of networks use EIM and around 11%
non-EIM. In other cases, UDP was blocked entirely.

4.4 UDP hole punching

Peer-to-peer communication relies on a direct interconnected connection between two peers.
This necessitates an open (in this case) UDP port for sending packets between the nodes.
UDP hole punching is a technique that could be employed to open up these network ports.
Hole punching can be used in combination with EIM-NAT, but in the scenario of symmetric
NAT, hole punching is not technically feasible [7].

UDP hole punching operates by having two parties send UDP packets to the other party.
To do this, both parties must know the external IP address and external source port that
correspond to their UDP requests. As depicted in figure 1, peer A and B use a server on the
open internet for this purpose, most commonly a STUN server. Peer A and B send a message
to the STUN server from an arbitrary source port. The STUN server replies with the peer’s
external addresses and source ports. After exchanging the external address information
between peers, peer A can send a UDP datagram to B’s external address, and B can do the
same. Even though the endpoint for the second datagram is different, a NAT device using
EIM-NAT will use the same external source port for the request. Peer A’s NAT device now has
an entry accepting responses from B, and Peer B’s NAT device will accept datagrams from A.

4.5 STUN & TURN

A STUN (Session Traversal Utilities for NAT) server is a simple, lightweight server that re-
turns the requester’s external IP address and port in a response body. By issuing multiple
specific requests to a TURN server, the existence of NAT and its type can be determined. This
information provided by STUN can be used to perform UDP hole punching for establishing
peer-to-peer connectivity. When UDP hole punching is not possible, like with symmetric
NAT, a TURN (Traversal Using Relay NAT) server can be used as a relay or proxy.

5 Methodology

This section will discuss the approach and various techniques used to realize a peer-to-peer
solution for various NAT scenarios. First, the various techniques to traverse NATs are ex-

Marijn Valks, Robin Slot PAGE 5 OF 31

PROJECT REPORT

Figure 1: UDP Holepunching

plained, followed by an overview of the test methodology. In the end, some design principles
regarding the project are explained.

5.1 Techniques used to traverse NATs

In section 4.3, we discussed various NAT types. EIM-NAT necessitates a distinct NAT traver-
sal approach compared to symmetric NAT. Besides these two approaches, there are other
approaches that can facilitate peer-to-peer connections through firewalls or NAT routers[8]:

• If the device has a direct connection to the internet without a firewall (IPv4 or IPv6),
a direct connection can be made.

• If the device is behind a firewall, but has an IPv6 Globally Reachable Address (GUA)
or external IPv4 address, UDP hole punching can be used to allow traffic through the
firewall.

• If the device is behind NAT, UDP hole punching can be used to forward traffic to the
device, as long as the NAT router does not use Symmetric NAT. UDP hole punching
works with many types of NAT, as long as it is endpoint independent (IEM-NAT).

• If the device is in a network where UPnP port forwarding is allowed, it can request the
NAT router to forward traffic to itself.

• In other cases, a proxy server must be used to relay traffic to the device. The device
creates an outgoing connection to the relay server.

5.2 Testing methodoloy

An important aspect of our research is determining the NAT mode for all possible scenarios,
as this forms the starting point of our investigation. The new solution must be developed
with the various NAT scenarios in mind. For example, if many practical scenarios use Sym-
metric NAT, a different project approach must be adopted compared to the case where most
scenarios use EIM NAT.

Marijn Valks, Robin Slot PAGE 6 OF 31

PROJECT REPORT

To test this, a STUN client is used. Pystun33 serves as both a library for programmers and
a command line STUN client written in Python. Pystun3 implements the STUN protocol and
returns the NAT type, external source IP address, and external source port used to connect
to either a public STUN server or a self-defined STUN server as a response. The discovered
IP address and port could be used to perform UDP hole punching; i.e. to create a firewall
or NAT table entry as explained in section 4.4. The table entry allows incoming traffic from
a specific IP address and port to enter the network for a device-dependent time period.
RFC 4787[9] recommends a duration of 5 minutes or more for UDP NAT mappings, but
this may differ in practice. Most vendors use a lower duration as the default configuration.
This testing principle is used to test whether direct peer-to-peer connections are genuinely
possible for EIM-NATs, using the following test flow:

1. Run ‘pystun3’ on both peer A and peer B to request NAT type, IP address, and port.

2. Use this information to send a UDP packet from peer A to peer B and vice versa.

3. This creates a UDP table entry for the external IP address and port of peer A to peer B
and vice versa.

4. Within the time range of the UDP table entry, attempt to establish a WireGuard con-
nection to the other peer’s IP address and port.

This testing flow using pystun3 is employed to determine the following practical scenarios:

• A client behind a router with Symmetric NAT

• A client behind double port restricted NAT

• A client behind a incoming firewall without NAT

• A client with an open internet connection

• A client behind different combination of everything described above

5.3 Preserving the integrity of the WireGuard protocol

One of the project goals is to preserve the integrity of the WireGuard protocol. The main
reason for this is that it keeps the integration with the client simple and straightforward. In
addition to various implementation benefits, it also simplifies various management tasks of
the eduVPN client. By using the original WireGuard codebase without making modifications
for a particular use case, the responsibility for addressing security vulnerabilities in the
WireGuard codebase remains with the contributors of WireGuard.

Additionally, on Linux it means that the existing WireGuard implementation can be lever-
aged via NetworkManager. By shifting the responsibility of managing network interfaces,
the root access requirement is eliminated.

5.4 NetworkManager and rootless operation

Setting up a WireGuard tunnel on Linux would require root access. To keep attack surface
to a minimum, this should be avoided. NetworkManager is a system service found in most
Linux desktop installations, that allows regular users to manage network connections. It can
be controlled via D-Bus, a middleware message bus for the Linux desktop. This D-Bus API
can be used from a Python application using PyGObject4. The proof of concept should have
an operation mode using NetworkManager, to confirm it is possible to dynamically add and
remove peers using NetworkManager.

Root access is still required for UDP hole punching as RAW sockets are being used. RAW
sockets have direct access to lower-layer protocols, providing more capabilities than regular

3https://github.com/talkiq/pystun3
4https://pygobject.readthedocs.io/en/latest/

Marijn Valks, Robin Slot PAGE 7 OF 31

PROJECT REPORT

sockets but requiring root privileges. However, this part of the code can be extracted to a
separate binary, so it can be run as root while the rest of the application is run as a normal
user. This code is only responsible for sending a single UDP datagram.

5.5 User-defined network approach

We considered two approaches of building a peer-to-peer VPN solution. One would be to
adapt the existing network via a central server, to build additional tunnels between peers on
that network. There would be some algorithm to decide when to ‘upgrade’ connections to
a peer-to-peer connection. We could not think of a robust way of implementing these con-
nection upgrades and downgrades. In addition, there was concern whether such a system
would have use cases, or whether it was a solution in search of a problem.

The alternative chosen approach, as suggested by F. Kooman (the original architect of
eduVPN), involves using user-defined networks to build fully peer-to-peer mesh networks
separate from the standard VPN solution. Users would be able to create user-defined net-
works with custom private subnets. They would be able to assign static IP addresses to
devices on their network. This user-defined network would function like a virtual LAN,
where all devices are reachable but can be physically located anywhere.

Due to the potential overlap of IP ranges, the central server can’t participate in these VPN
networks. As a result, the central server cannot serve as a fallback option when peer-to-peer
connections are not possible. A custom relay server must be built to relay traffic between
these isolated peers.

6 Results

6.1 Different scenarios

In section 5.1, various techniques for traversing NATs are discussed, all of which have been
thoroughly researched and tested in practice. UDP hole punching is effective for scenarios
where a device is connected to the internet with Endpoint-Independent Mapping NAT (EIM-
NAT).

In the final program, the management server also functions as a STUN server. For our
proof of concept, only very basic STUN functionality was needed, so it was easier and simpler
to implement it ourselves without using pystun3.

Table 1 shows possible network configurations for both peers, and whether a peer-to-
peer connection is possible. In all cases, at least a slower connection is possible through
the relay server. In the vast majority of cases, a peer-to-peer connection is possible. As
a comparison, table 2 shows when connections are possible with the standard WireGuard
client.

In very restricted networks where UDP is blocked, proxyguard 7 can be used to encap-
sulate WireGuard’s UDP datagrams in a TCP connection. This was not implemented in the
proof of concept, but it should be considered in future work.

Direct5 FW6 EIM-NAT Symmetric NAT UDP blocked
Direct P2P P2P P2P P2P Relay + proxyguard7

No NAT w/ FW P2P P2P P2P Relay + proxyguard7

EIM-NAT P2P P2P Relay + proxyguard7

Symmetric NAT Relay Relay + proxyguard7

UDP blocked Relay + proxyguard7

Table 1: Possible connections using our solution.

5Also applies in situations where NAT is used but bypassed using manual port forwarding
6Firewall for incoming connections
7TCP proxy for WireGuard: https://codeberg.org/eduVPN/proxyguard
8PersistentKeepalive required on one end

Marijn Valks, Robin Slot PAGE 8 OF 31

https://codeberg.org/eduVPN/proxyguard

PROJECT REPORT

Direct5 FW6 EIM-NAT Symmetric NAT UDP blocked
Direct Yes Yes8 Yes8 Yes8 No

No NAT w/ FW No No No No
EIM-NAT No No No

Symmetric NAT No No
UDP blocked No

Table 2: Possible peer-to-peer connections using standard WireGuard.

6.2 Feasibility of UPnP

Automated port forwarding via UPnP, NAT-PMP, or PCP would provide a solution for peer-
to-peer connectivity in difficult NAT situations, like symmetric NAT on both ends of a con-
nection. However, when testing UPnP in the wild using MiniUPnP9 we found that consumer
routers have a strict throughput limit on connections via ports opened using UPnP. The
TP-Link Archer C7 had a limit of 100Mbit/s. This already negates one advantage of peer-
to-peer connections; higher throughput. Other devices, such as modem routers provided by
the Dutch residential ISP Ziggo, have a limit of only 1Mbit/s, completely invalidating UPnP
as an option for establishing high-throughput VPN tunnels. These limits were reported by
the routers. We confirmed that they were accurate by opening a port via UPnP and testing
throughput using iperf3.

6.3 eduVPN general working

The eduVPN peer-to-peer solution has two operating modes, either a direct peer-to-peer
connection or a connection through a relay in cases where a direct peer-to-peer connection
is not feasible. As mentioned in section 5.3, the goal was to maintain the integrity of the
WireGuard protocol. This has the result that in both cases, the UDP packet used by the
WireGuard protocol remains identical. Figure 2 visualizes the two operating modes: on the
left side, a peer-to-peer connection is made between two clients by using hole punching and
on the right side, a relay server is used to connect two clients.

Further details about both operating modes are provided in sections 6.6 and 6.7 respec-
tively.

Figure 2: WireGuard messages, comparing peer-to-peer (left) scenario and relaying (right)

9http://miniupnp.free.fr/

Marijn Valks, Robin Slot PAGE 9 OF 31

http://miniupnp.free.fr/

PROJECT REPORT

6.4 Separation of management connection and data stream

Apart from the regular WireGuard data stream, the new eduVPN solution features a dedi-
cated management connection between each client and the management server. This man-
agement connection helps solve the scaling issue of WireGuard itself. WireGuard relies on
configuration files or commands for configuring and updating peers. However, there is no
direct support for managing these peers as required in the eduVPN use case. Since edu-
VPN is designed as a user-friendly VPN solution, users are not expected to handle their own
WireGuard configurations. Therefore, the new solution must provide a mechanism to add
or remove peers or inform other peers to request a configuration update. This is achieved
by providing an additional management connection alongside the regular WireGuard datas-
tream.

6.5 Connection process

The management connection establishes a continuous link between all clients and the man-
agement server, relying on a TCP session. Figure 3 illustrates the initial connection flow
and the message payloads between Client A and the server. The connection begins with the
client generating a WireGuard key pair. The first two messages of the handshake between
the client and server use UDP. The client sends a magic packet to the known server address
and port. The server receives this and responds with an AddressResponse packet, based
on the same principle as STUN, which retrieves the external source IP address and port of
Client A used to connect to the server. At this point, Client A knows its external IP address
and port. It will create a WireGuard interface using the same source port as the port used
for the initial UDP communication. That means that the external source port will be also be
the same, now known to the client via the AddressResponse.

Simultaneously, the client opens a TCP connection to the management channel, in a new
thread. The client sends the first message PeerHello to the server and keeps the manage-
ment socket active, awaiting replies. The server actively listens for PeerHello messages.
When such a message is received, it responds with a PeerList message, containing all cur-
rently known peers in the network. It will also send the same PeerHello message to all
other clients already connected to the server, so they can add the newly connected peer.

When the client receives PeerList, it calls a function to update its peers. This function
initiates the hole-punching process using a raw UDP socket, as explained in section 4.4.
After the hole-punching process, the clients add the peers to their WireGuard interface. If
peers use EIM-NAT, a peer-to-peer connection starts working, if not it falls back to the relay
scenario.

6.6 eduVPN peer-to-peer hole punching working

After the client successfully connects to the central server and receives the PeerList with
the PeerInfo, it starts a new thread for every PeerInfo using a setup peer connection
function. This function initiates the hole-punching process for all peers simultaneously. The
management connection uses the same address and port as the WireGuard connection. Due
to the ongoing management connection, hole-punching is blocked resulting in an ’address is
already in use’ error. RAW sockets can provide a solution for that as they have direct access
to lower-layer protocols and simply do not check for double addresses. The RAW sockets
send a UDP datagram packet to the host IP address and port of the other peer, using its own
source address with the same source port as used earlier. This results in a NAT table entry
for the given address and port.

6.7 eduVPN peer-to-peer relay working

The fallback from hole punching to relay uses an update peer function. This function
changes the peer endpoint from the address of the other peer to the relay server address.

Marijn Valks, Robin Slot PAGE 10 OF 31

PROJECT REPORT

Figure 3: New client joining a network

The relay server on the other hand actively listens for WireGuard data packets on its config-
ured listening port. When the server receives a data packet, it checks the sender’s address
and looks to see if it is stored in the Network By Address dictionary. If so, it transmits the
packet to all addresses within the same network group; otherwise, it discards the packet.
Therefore, apart from the endpoint address there is no client-side configuration difference
between a peer-to-peer connection or a relay connection.

6.8 Determination of peer-to-peer or relay

As described in section 6.1, our solution is feasible for every different NAT scenario. How-
ever, in some cases a direct peer-to-peer connection is not possible, and a relay server must
be used. The client employs a principle to determine whether a direct peer-to-peer solution
is possible or if it must use the relay as a fallback. It accomplishes this by following the steps
described below:

1. Perform UDP hole punching

2. Set up a WireGuard peer-to-peer connection with PersistentKeepalive=1

3. Monitor the RX bytes (received bytes) for the newly set up peer

(a) If RX bytes increases the peer-to-peer connection must be successful, set
PersistentKeepalive=25

(b) If RX bytes does not increase the peer-to-peer connection failed, set endpoint to
relay server and set PersistentKeepalive=25

Marijn Valks, Robin Slot PAGE 11 OF 31

PROJECT REPORT

After the client determines that a peer-to-peer connection is not possible, it switches to relay
mode and changes its WireGuard peer endpoint to the address of the relay server. By doing
this, the peer will no longer send messages to the other peer’s address but to the relay server.
This interface switch occurs on both clients through their management connections. This
management connection is also used to adjust the PersistentKeepalive from 1 second to
25 seconds. This is done in both scenarios: whether a peer-to-peer connection is feasible or
if the switch to the relay server is implemented.

6.9 IPv6

A WireGuard interface can only listen on one port. Hence, on dual stack IPv4 and IPv6 hosts,
hole punching must done using the same local source port for IPv4 and IPv6. If NAT is used
for both IPv4 and IPv6, two external source ports will be obtained. This is no problem, the
management server distributes IPv4 and IPv6 IP addresses and port numbers. A connecting
client can choose between the two. Only between IPv4-only hosts and IPv6-only hosts, peer
to peer communication is not possible. This is not a limitation of our proof of concept, but
of networking in general.

Figure 3 shows in which cases a peer to peer connection is possible. ‘P2P’ means a peer-
to-peer connection is attempted, but it may still fall back to relay mode for reasons explained
in section 6.1.

IPv4 IPv4+IPv6 IPv6
IPv4 P2P P2P Relay

IPv4+IPv6 P2P P2P
IPv6 P2P

Table 3: Operation modes using different address families.

6.10 Performance improvement

The performance improvement of the new eduVPN solution compared to the old solution
is challenging to measure. The peer-to-peer architecture generally provides a faster con-
nection to other endpoints than the old central server VPN architecture. Performance is
a combination of bandwidth and latency, where bandwidth doesn’t improve using peer-to-
peer connections as it is mostly based on the client and internet service provider network
bandwidth. The peer-to-peer connection probably uses the same internet connection as the
regular central server model. Bandwidth could only be improved if the central server model
had client restrictions or bottlenecks in its VPN server. When multiple clients use the client-
server VPN model, they share the CPU resources of the central VPN server. It could be the
case that the CPU of this server does not have the capabilities to provide enough resources to
every individual client. In such cases, a peer-to-peer connection could improve performance
as it doesn’t rely on a central server with bandwidth restrictions or bottlenecks.

Discussing improvements in latency is as intricate as discussing enhancements in band-
width. By removing the central server from the traditional solution, the total number of
hops10 from client to client reduces, as the peer-to-peer solution connects directly. How-
ever, the performance depends on the specific situation. For example, if two clients connect
through a peer-to-peer connection and are geographically close to each other, the connec-
tion could be much faster compared to if the same clients connected through a central VPN
server geographically located far away from the clients. The question is whether these kinds
of scenarios happen frequently in practice. In most cases, clients won’t have the ability
to connect to each other with fewer internet hops, thus not benefiting from the peer-to-
peer model as they continue to use the regular internet route through their internet service
provider’s network.

10A hop is network counting term for when a packet is passed from one network segment to the next segment.

Marijn Valks, Robin Slot PAGE 12 OF 31

PROJECT REPORT

So, there are scenarios where clients could benefit from a peer-to-peer connection com-
pared to a regular central server model, but it is challenging to measure.

7 Discussion

7.1 Performance and availability

During this research and development of the Proof of Concept (PoC), some problems and
possible improvements have arisen. The first one is the performance of the relay server, as
it is a performance-critical component of the VPN system. The current prototype in Python
only manages to relay traffic with very poor throughput of <100 megabits per second, as
measured with iperf3 with default settings. To be suitable for use in a production en-
vironment, the relay server must be implemented in a programming language with high
networking performance like C, Go or Rust. Go would make the most sense, as the current
eduVPN management daemon is also written in Go.

Another downside of the current PoC is that in the case of a relay packet, it simply
forwards the packet to all connected peers. When a client sends a packet through the relay
server to another client, it gets broadcasted by the relay server to all currently connected
peers. Apart from the confidentiality downsides, it is also very inefficient for large networks.

The PoC still relies on one server that functions as a central management server and relay
(TURN) server, making it a single point of failure. Most of these discussing points are taken
into consideration for future works9 or are simply considered out of scope for the PoC as it
is not production-proof yet.

7.2 Security

The second point of discussion is the lack of security in the PoC. Although various techniques
are built into the PoC, it is not considered secure. There is no client authentication; if the
management/ relay server is active, anyone who obtains the client source code could form
a peer if they know the server endpoint address. Another security risk of the current PoC
is IP spoofing. The relay server checks the source address of a data packet before relaying
it to the designated peers, but it isn’t protected against IP spoofing. If a relay packet with
a spoofed IP address is sent to the relay server, it gets forwarded without any additional
checking mechanisms. This poses a security risk as the relay server could be used to send
malicious traffic to connected peers.

7.3 Roaming

As discussed in section 6.8, the PoC decides when a connection is setup whether a peer-
to-peer connection can be established. However, once a connection is working, it does not
monitor the connection status. Usually, changing networks means the TCP management
channel socket breaks. When this socket is closed, the server automatically removes the
corresponding peer and broadcasts a new peer list to other peers in the network. When a
VPN client starts a new management channel connection, its address information is sent to
all other peers again and a new network connection is started.

However, in the case where for whatever reason WireGuard’s UDP data stream breaks,
but the TCP management socket stays alive, the VPN connection breaks. This can happen
for example if a device loses connectivity for a few minutes. Firewalls and NAT devices
usually remember idle sessions longer in the case of TCP than for UDP. TCP session timeout
is required to be at least 2 hours and 4 minutes [12, §5], while for UDP the requirement is
no less than 2 minutes [9, §4.3]).

Marijn Valks, Robin Slot PAGE 13 OF 31

PROJECT REPORT

8 Conclusion

To enable eduVPN to offer peer-to-peer VPN functionality, various network scenarios in
which potential eduVPN users might want to establish peer-to-peer connections were in-
vestigated. A technique for enabling a peer-to-peer connection must be determined for each
specific scenario. In situations where clients have access to a public IPv4 or IPv6 address,
a direct connection can be established. A firewall on incoming traffic, if present, can be
bypassed using UDP hole punching. However, for more challenging and simultaneously,
more common scenarios involving NAT devices, various techniques are being researched to
traverse these NAT devices.

One such technique is to use hole punching to open network ports. Hole punching
utilizes a STUN server to create table entries in network NAT devices. The functionality
required by the STUN protocol to create NAT table entries is incorporated into a dedicated
central server. This central server not only functions as a STUN server but also serves as
a relay(TURN) server and management server. The relay server becomes essential when
a direct peer-to-peer connection is not feasible, which occurs only when both clients are
behind a Symmetric NAT device. In any other combination of various EIM NAT types, or
even Symmetric NAT on one client, a direct peer-to-peer connection is possible.

The new solution incorporates a mechanism to first assess the feasibility of a peer-to-peer
connection, resorting to the fallback relay server if necessary. This relay server forwards data
packets using RAW sockets from one client to the other. The orchestration of both the peer-
to-peer connection and the relay connection is managed through a dedicated management
connection. All eduVPN clients connect to the management server through a custom hand-
shake protocol, which is employed to dynamically add, remove, or update peers for the
client.

Although UPnP is a technique for opening network ports, it is deemed impractical due to
bandwidth limitations on UPnP connections in most consumer routers. For the last network
scenario where UDP is completely blocked, the relay server could be utilized in combination
with proxyguard. However, this option was not thoroughly researched as it was excluded
from the project scope.

To conclude, WireGuard can be used to develop a peer-to-peer VPN solution for various
practical scenarios, utilizing hole punching for direct peer-to-peer connections or a relay
(TURN) server in cases where hole punching is not feasible. The developed solution could
be integrated into the eduVPN architecture without modifying the WireGuard protocol itself,
thus maintaining the integrity of the protocol.

9 Future Work

9.1 TCP Proxy

WireGuard VPN tunnels use UDP traffic. For networks that block UDP, eduVPN currently
falls back to OpenVPN over TCP. However, they are developing a TCP proxy for WireGuard;
proxyguard. Instead of connecting to a peer directly, WireGuard connects to proxyguard

which encapsulates UDP datagrams as TCP segments and forwards it to a proxyguard in-
stance on the other end.

Our mesh network can use proxyguard in a similar way. WireGuard would connect to
proxyguard, which would connect to the relay server over TCP. The relay server would need
to be modified to relay TCP traffic alongside UDP traffic.

9.2 Separation of relay server and management server

The current proof of concept has a single server program that runs a UDP relay and mock
management server. This is because the relay server needs information from the manage-
ment server; the network and peers that correspond to a UDP source address and port.

Marijn Valks, Robin Slot PAGE 14 OF 31

PROJECT REPORT

However, it could also obtain this information from the management server via an API over
the network.

eduVPN already has a management server, in which the functions of our proof of concept
management server could be integrated. The relay server should be built as a separate
server component. This separation is important because it could allow the relay server
to be programmed in a high performance programming language. Since the relay server
is a simple independent program, many instances of the relay server can be hosted as a
distributed system, only occasionally retrieving data from the main management server.
The relay servers require lots of network throughput, the management servers don’t.

9.3 Integration with eduVPN client

The proof of concept is built separately from the official eduVPN solution. The next step of
the project will be to integrate it into an eduVPN release. eduVPN is currently running on
version 311, and as the proof of concept is using completely new techniques, integrating it
would likely result in a new major version. Before this can take place, the last remaining
points discussed in section 7 discussion and section 9 future works must be resolved or, at
least, taken into consideration.

11https://codeberg.org/eduVPN/vpn-user-portal/src/branch/v3/CHANGES.md

Marijn Valks, Robin Slot PAGE 15 OF 31

PROJECT REPORT

References

[1] Nick Aquina. “WireGuard in eduVPN”. In: (Jan. 12, 2021). URL: https://www.tuxed.
net/fkooman/files/eduVPN-WireGuard.pdf.

[2] Marek Küthe. Comparison of self-meshing VPNs. Dec. 13, 2023. URL: https://mk16.
de/blog/comparison-of-self-meshing-vpns (visited on 01/08/2024).

[3] Avery Pennarun. “How Tailscale works”. In: Tailscale Blog (Mar. 20, 2020). URL:
https://tailscale.com/blog/how-tailscale-works (visited on 01/10/2024).

[4] David Anderson. How NAT traversal works. Aug. 21, 2020. URL: https://tailscale.
com/blog/how-nat-traversal-works.

[5] Documentation eduVPN. URL: https://docs.eduvpn.org (visited on 12/06/2023).

[6] Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. June 1,
2020. URL: https://www.wireguard.com/papers/wireguard.pdf (visited on
01/10/2024).

[7] Jonathan Rosenberg et al. STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs). RFC 3489. Mar. 2003. DOI: 10.17487/
RFC3489. URL: https://www.rfc-editor.org/info/rfc3489.

[8] Bryan Ford, Dan Kegel, and Pyda Srisuresh. State of Peer-to-Peer (P2P) Communication
across Network Address Translators (NATs). RFC 5128. Mar. 2008. DOI: 10.17487/
RFC5128. URL: https://www.rfc-editor.org/info/rfc5128.

[9] Cullen Fluffy Jennings and Francois Audet. Network Address Translation (NAT) Behav-
ioral Requirements for Unicast UDP. RFC 4787. Jan. 2007. DOI: 10.17487/RFC4787.
URL: https://www.rfc-editor.org/info/rfc4787.

[10] Patrick Sattler. “NAT Analyzer Results”. In: (Nov. 30, 2011). URL: https://web.

archive.org/web/20200213115759/http://nattest.net.in.tum.de/results.

php (visited on 02/13/2020).

[11] Gertjan Halkes and Johan Pouwelse. “UDP NAT and Firewall Puncturing in the Wild”.
In: NETWORKING 2011. Ed. by Jordi Domingo-Pascual et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1–12. ISBN: 978-3-642-20798-3.

[12] Bryan Ford et al. NAT Behavioral Requirements for TCP. RFC 5382. Oct. 2008. DOI:
10.17487/RFC5382. URL: https://www.rfc-editor.org/info/rfc5382.

Marijn Valks, Robin Slot PAGE 16 OF 31

https://www.tuxed.net/fkooman/files/eduVPN-WireGuard.pdf
https://www.tuxed.net/fkooman/files/eduVPN-WireGuard.pdf
https://mk16.de/blog/comparison-of-self-meshing-vpns
https://mk16.de/blog/comparison-of-self-meshing-vpns
https://tailscale.com/blog/how-tailscale-works
https://tailscale.com/blog/how-nat-traversal-works
https://tailscale.com/blog/how-nat-traversal-works
https://docs.eduvpn.org
https://www.wireguard.com/papers/wireguard.pdf
https://doi.org/10.17487/RFC3489
https://doi.org/10.17487/RFC3489
https://www.rfc-editor.org/info/rfc3489
https://doi.org/10.17487/RFC5128
https://doi.org/10.17487/RFC5128
https://www.rfc-editor.org/info/rfc5128
https://doi.org/10.17487/RFC4787
https://www.rfc-editor.org/info/rfc4787
https://web.archive.org/web/20200213115759/http://nattest.net.in.tum.de/results.php
https://web.archive.org/web/20200213115759/http://nattest.net.in.tum.de/results.php
https://web.archive.org/web/20200213115759/http://nattest.net.in.tum.de/results.php
https://doi.org/10.17487/RFC5382
https://www.rfc-editor.org/info/rfc5382

PROJECT REPORT

Appendix
The code can also be found on GitHub12

A README.md

A.1 Peer to Peer WireGuard

Example of a VPN client and server that allows creating a peer to peer mesh network using
WireGuard, without modifications to WireGuard itself. Uses UDP hole punching or a relay
server. Fully supports IPv4 and IPv6 inside the tunnel, for peer to peer connections, for the
relay server and the management server.

A.2 Requirements

Install wireguard-tools and a recent version of Python 3. No Python dependencies are
required.

Additional requirements to use NetworkManager: python3-gi (Debian) or
python3-gobject (Fedora).

B Server

Create the configuration file server config.json:

{
” s e r v e r p o r t ” : 3000 ,
” l o g l e v e l ” : ” INFO”

}

log level can be changed to DEBUG for increased log output. The server runs a TCP and
UDP server; ensure incoming traffic is allowed for both protocols.

B.1 Client

Create the configuration file client config.json:

{
” uuid ” : ”b20b3973−6dcd−43be−a097−e80126ae6532 ” ,
” address4 ” : ”10 .200 .0 .1 ” ,
” address6 ” : ” fd f0 : a1e8 :32b1 : 2 0 0 : :1 ” ,
” s e r v e r h o s t ” : ” l o c a l h o s t ” ,
” s e r v e r p o r t ” : 3000 ,
” l o g l e v e l ” : ” INFO ” ,
” network manager ” : t rue

}

• Every peer in a mesh network needs to be configured with the same UUID. A UUID
can be generated using uuidgen or python3 -m uuid.

• Each peer should use a unique IPv4 and IPv6 address. The IPv4 address will
be part of a /24 network, and the IPv6 address part of a /64 network. The
IPv4 address should usually be in 10.0.0.0/8 or 172.16.0.0/12, 192.168.0.0/16.
The IPv6 address should usually be chosen from the fd00::/8 range, in the
fdss:ssss:ssss:nnnn::/64 format; s is a randomly chosen global ID, and n the net-
work ID.

12https://github.com/Derkades/os3-wg-p2p/tree/main

Marijn Valks, Robin Slot PAGE 17 OF 31

PROJECT REPORT

• The client must be started with elevated privileges.

• log level can be changed to DEBUG for increased log output.

• network manager can be set to true to use NetworkManager via DBus or false to run
ip / wg commands.

C client.py

1 import json

2 import logging

3 import os

4 import select

5 import sys

6 import time

7 from ipaddress import IPv6Address

8 from pathlib import Path

9 from socket import SHUT_RDWR , SOCK_DGRAM , SOCK_STREAM , getaddrinfo , socket

10 from threading import Event , Thread

11 from typing import Optional

12 import random

13

14 import messages

15 from messages import MAGIC , AddressResponse , PeerHello , PeerList

16 from wg import WGManager , get_wireguard

17

18 log = logging.getLogger(’client ’)

19

20

21 def mgmt_thread(mgmt_sock: socket , config , pubkey: str , addr4: tuple[str , int

], addr6: tuple[str , int], wg: WGManager):

22 # Send hello to server via management channel

23 hello = PeerHello(config[’uuid’],

24 pubkey ,

25 config[’address4 ’],

26 config[’address6 ’],

27 addr4 ,

28 addr6)

29 log.debug(’sending hello: %s’, hello)

30 mgmt_sock.send(messages.pack(hello))

31

32 while True:

33 data = mgmt_sock.recv (16384)

34 if data == b’’:

35 break

36

37 peer_list: PeerList = messages.unpack(data)

38 log.debug(’received %s peers from server ’, len(peer_list.peers))

39 log.debug("peer list: %s", peer_list)

40 wg.update_peers(peer_list.peers)

41

42 log.debug(’mgmt thread exits ’)

43

44

45 def get_addr_info(server_host: str , server_port: int , source_port: int) ->

tuple[tuple[str , int], tuple[str , int]]:

46 """

47 Send UDP packet to server to discover external address and port.

48 Also opens up NAT/firewall to receive UDP from relay server to WireGuard

49 """

50 addr4: Optional[tuple[str , int]] = None

51 addr6: Optional[tuple[str , int]] = None

52

53 for address in getaddrinfo(server_host , server_port , type=SOCK_DGRAM):

54 s_family , s_type , _s_proto , _s_canonname , s_addr = address

55

56 with socket(s_family , s_type) as sock:

Marijn Valks, Robin Slot PAGE 18 OF 31

PROJECT REPORT

57 log.debug(’connecting to %s with source port %s’, s_addr ,

source_port)

58 sock.bind((’’, source_port))

59 sock.connect(s_addr)

60 sock.send(MAGIC)

61 readable , _writable , _exceptional = select.select ([sock], [], [],

2)

62 if not readable:

63 log.debug(’no response from server ’)

64 continue

65 data = readable [0]. recv(AddressResponse.SIZE)

66 resp = AddressResponse.unpack(data)

67 ipv4_mapped = IPv6Address(resp.host).ipv4_mapped

68 if ipv4_mapped:

69 addr4 = (str(ipv4_mapped), resp.port)

70 else:

71 addr6 = (resp.host , resp.port)

72

73 return addr4 , addr6

74

75

76 def main():

77 config = json.loads(Path(’client_config.json’).read_text(encoding=’utf -8’)

)

78 logging.basicConfig ()

79 logging.getLogger ().setLevel(config[’log_level ’])

80

81 privkey = WGManager.gen_privkey ()

82 pubkey = WGManager.gen_pubkey(privkey)

83 relay_endpoint = f"{config[’server_host ’]}:{ config[’server_port ’]}"

84

85 log.debug(’wireguard public key: %s’, pubkey)

86

87 log.info(’retrieving address information ’)

88

89 listen_port = random.randint (2**15 , 2**16)

90 addr4 , addr6 = get_addr_info(config[’server_host ’], config[’server_port ’],

listen_port)

91

92 if not addr4 and not addr6:

93 log.error(’could not discover external address ’)

94 sys.exit (1)

95

96 log.info(’address info IPv4: %s’, addr4)

97 log.info(’address info IPv6: %s’, addr6)

98

99 addresses = getaddrinfo(config[’server_host ’], config[’server_port ’], type

=SOCK_STREAM)

100 for s_family , s_type , _s_proto , _s_canonname , s_addr in addresses:

101 # Establish connection for management channel

102 mgmt_sock = socket(s_family , s_type)

103 mgmt_sock.connect(s_addr)

104 log.info(’connected to management server: [%s]:%s’, s_addr [0], s_addr

[1])

105 break

106 else:

107 log.error(’cannot resolve server host: %s’, config[’server_host ’])

108 sys.exit (1)

109

110 if_name = ’wg_p2p_ ’ + os.urandom (2).hex()

111

112 wg = get_wireguard(config[’network_manager ’], if_name , privkey , pubkey ,

113 listen_port , addr4 is not None , addr6 is not None ,

114 config[’address4 ’], config[’address6 ’],

115 relay_endpoint)

116

117 def interface_up ():

118 Thread(target=mgmt_thread , args=(mgmt_sock , config , pubkey , addr4 ,

addr6 , wg)).start()

119

Marijn Valks, Robin Slot PAGE 19 OF 31

PROJECT REPORT

120 log.info(’creating WireGuard interface ’)

121 wg.create_interface(interface_up)

122

123 try:

124 while True:

125 time.sleep (1)

126 except (KeyboardInterrupt , SystemExit):

127 log.info(’exiting ’)

128 log.debug(’close socket ’)

129 mgmt_sock.shutdown(SHUT_RDWR)

130 mgmt_sock.close()

131 log.debug(’remove interface ’)

132 event = Event ()

133 wg.remove_interface(event.set)

134 log.debug(’waiting for remove_interface event ’)

135 event.wait()

136

137

138 if __name__ == ’__main__ ’:

139 main()

D server.py

1 import json

2 import logging

3 import queue

4 import select

5 from socket import IPPROTO_IPV6 , IPV6_V6ONLY , SHUT_RD , SO_REUSEADDR ,

SOCK_STREAM , SOL_IP , SOL_SOCKET , socket , SOCK_DGRAM , AF_INET , AF_INET6

6 import time

7 from dataclasses import dataclass

8 from multiprocessing.pool import ThreadPool

9 from pathlib import Path

10 from threading import Thread

11

12 import messages

13 from messages import MAGIC , AddressResponse , PeerHello , PeerInfo , PeerList

14

15 log = logging.getLogger(’server ’)

16

17 @dataclass

18 class Peer:

19 """ Device (a WireGuard interface) in a network """

20 sock: socket

21 addr4: tuple[str , int]

22 addr6: tuple[str , int]

23 pubkey: str

24 vpn_addr4: str

25 vpn_addr6: str

26

27

28 @dataclass

29 class Network:

30 """ Network of peers """

31 uuid: str

32 peers: list[Peer]

33

34

35 NETWORK_BY_UUID: dict[str , Network] = {}

36 NETWORK_BY_ADDR: dict[tuple[str , int], Network] = {} # for relay only

37 SOCKETS: set[socket] = set()

38 POOL = ThreadPool (32)

39

40

41 class Server:

42 inputs: list[socket] = []

43 outputs: list[socket] = []

44 queues: dict[socket , queue.Queue] = {}

45 sock_to_peer: dict[socket , tuple[Network , Peer]] = {}

Marijn Valks, Robin Slot PAGE 20 OF 31

PROJECT REPORT

46

47 def send(self , sock: socket , data: bytes):

48 self.queues[sock].put(data)

49 self.outputs.append(sock)

50

51 def close(self , sock: socket):

52 log.debug(’closing socket ’)

53 self.inputs.remove(sock)

54 if sock in self.outputs:

55 self.outputs.remove(sock)

56 sock.close()

57 self.remove_peer(sock)

58

59 def remove_peer(self , sock: socket):

60 if sock in self.sock_to_peer:

61 net , peer = self.sock_to_peer[sock]

62 log.info(’removing disconnected peer: %s’, peer)

63 net.peers.remove(peer)

64 del self.sock_to_peer[sock]

65 self.broadcast_peers(net.peers)

66 else:

67 log.debug(’socket closed without disconnecting peer’)

68

69 def broadcast_peers(self , peers: list[Peer]):

70 log.info(’broadcast updated peer list to %s peers’, len(peers))

71 peer_list = PeerList ([PeerInfo(peer.addr4 , peer.addr6 , peer.pubkey ,

peer.vpn_addr4 , peer.vpn_addr6) for peer in peers])

72 peer_list_bytes = messages.pack(peer_list)

73 def send(peer: Peer):

74 self.send(peer.sock , peer_list_bytes)

75 POOL.map(send , peers)

76

77 def handle_peer_hello(self , data , sock):

78 hello: PeerHello = messages.unpack(data)

79 if not hello:

80 log.warning(’ignoring invalid message from client ’)

81 return

82

83 log.debug(’received hello: %s’, hello)

84

85 new_peer = Peer(sock , hello.addr4 , hello.addr6 , hello.pubkey , hello.

vpn_addr4 , hello.vpn_addr6)

86 log.debug(’new peer: %s’, new_peer)

87

88 if hello.uuid in NETWORK_BY_UUID:

89 log.info(’joining peer %s onto existing network %s’, hello.pubkey ,

hello.uuid)

90 net = NETWORK_BY_UUID[hello.uuid]

91 net.peers.append(new_peer)

92 else:

93 log.info(’registered new network %s for peer %s’, hello.uuid ,

hello.pubkey)

94 net = Network(hello.uuid , [new_peer])

95 NETWORK_BY_UUID[hello.uuid] = net

96

97 NETWORK_BY_ADDR[hello.addr4] = net

98 NETWORK_BY_ADDR[hello.addr6] = net

99 self.sock_to_peer[sock] = (net , new_peer)

100

101 self.broadcast_peers(net.peers)

102

103 def start(self , config):

104 with socket(AF_INET6 , SOCK_STREAM) as server:

105 server.setblocking (0)

106 server.setsockopt(SOL_SOCKET , SO_REUSEADDR , 1)

107 # Bind to IPv6 only

108 # Dual stack mode accepts IPv4 connections using IPv4 -mapped IPv6

address

109 server.bind((’::’, config[’server_port ’]))

110 server.listen ()

Marijn Valks, Robin Slot PAGE 21 OF 31

PROJECT REPORT

111 log.info(’management server listening on [%s]:%s’, server.

getsockname ()[0], server.getsockname ()[1])

112 SOCKETS.add(server)

113 self.inputs.append(server)

114

115 while self.inputs:

116 readable , writable , exceptional = select.select(self.inputs ,

self.outputs , self.inputs)

117

118 for sock in readable:

119 if sock is server:

120 client_sock , client_addr = sock.accept ()

121 log.debug(’new client connected from %s’, client_addr)

122 self.inputs.append(client_sock)

123 self.queues[client_sock] = queue.Queue ()

124 continue

125

126 data = sock.recv (16384)

127 if data:

128 self.handle_peer_hello(data , sock)

129 else:

130 self.close(sock)

131

132 for sock in writable:

133 try:

134 next_msg = self.queues[sock]. get_nowait ()

135 except queue.Empty:

136 self.outputs.remove(sock)

137 else:

138 sock.send(next_msg)

139

140 for sock in exceptional:

141 self.close(sock)

142

143 log.debug(’mgmt exit’)

144

145

146 class Relay:

147 def start(self , config):

148 with socket(AF_INET6 , SOCK_DGRAM) as sock:

149 SOCKETS.add(sock)

150 # Bind to IPv6 only

151 # Dual stack mode accepts IPv4 connections using IPv4 -mapped IPv6

address

152 sock.bind((’::’, config[’server_port ’]))

153 log.info(’relay server listening on [%s]:%s’, sock.getsockname ()

[0], sock.getsockname ()[1])

154 while True:

155 data , addr = sock.recvfrom (1024)

156 if data == b’’:

157 log.debug(’udp socket is dead’)

158 break

159

160 if data == MAGIC:

161 log.info(’sending address response to %s’, addr)

162 sock.sendto(AddressResponse(addr[0], addr [1]).pack(), addr

)

163 continue

164

165 if addr in NETWORK_BY_ADDR:

166 net = NETWORK_BY_ADDR[addr]

167 # Relay to all peers in the network. This is very

inefficient for

168 # larger networks. A proper solution would be to run a

separate

169 # UDP relay for every peer on a dedicated port. Then ,

outbound

170 # traffic from WireGuard would go to a different relay

depending

171 # on the desired actual peer.

Marijn Valks, Robin Slot PAGE 22 OF 31

PROJECT REPORT

172 for peer in net.peers:

173 # at least don’t relay back to peer

174 if addr != peer.addr4 and addr != peer.addr6:

175 log.debug(’relay %s -> %s’, addr , peer.wg_addr)

176 sock.sendto(data , peer.wg_addr)

177 continue

178

179 log.warning(’received unknown data from %s’, addr)

180

181

182 def main():

183 config = json.loads(Path(’client_config.json’).read_text(encoding=’utf -8’)

)

184 logging.basicConfig ()

185 logging.getLogger ().setLevel(config[’log_level ’])

186

187 relay = Relay ()

188 server = Server ()

189

190 Thread(target=relay.start , args=(config ,)).start()

191 Thread(target=server.start , args=(config ,)).start ()

192

193 try:

194 while True:

195 time.sleep (1)

196 except (KeyboardInterrupt , SystemExit):

197 log.info(’shutting down sockets ’)

198 for sock in SOCKETS:

199 try:

200 sock.shutdown(SHUT_RD)

201 except OSError:

202 pass

203 sock.close()

204

205

206 if __name__ == ’__main__ ’:

207 main()

E messages.py

1 import gzip

2 import json

3 import struct

4 from abc import ABC

5 from dataclasses import asdict , dataclass

6 from gzip import BadGzipFile

7 from ipaddress import IPv6Address

8 from json import JSONDecodeError

9 from typing import Optional

10

11 MAGIC = b’awesome peer to peer magic to distinguish packet as different from

wiregurad traffic ’

12

13

14 @dataclass

15 class AddressResponse:

16 SIZE = 18

17 FORMAT = ’!16sH’

18 host: str # IPv6 address or IPv4 -mapped IPv6 address (16 bytes)

19 port: int # port number (2 bytes)

20

21 def pack(self) -> bytes:

22 return struct.pack(self.FORMAT , IPv6Address(self.host).packed , self.

port)

23

24 @classmethod

25 def unpack(cls , packed: bytes) -> ’AddressResponse ’:

26 host , port = struct.unpack(cls.FORMAT , packed)

27 return cls(str(IPv6Address(host)), port)

Marijn Valks, Robin Slot PAGE 23 OF 31

PROJECT REPORT

28

29

30 class Message(ABC):

31 pass

32

33

34 @dataclass

35 class PeerHello(Message):

36 uuid: str # uuid

37 pubkey: str # wireguard pubkey

38 vpn_addr4: str # IPv4 address inside the VPN

39 vpn_addr6: str # IPv6 address inside the VPN

40 addr4: Optional[tuple[str , int]] # for wireguard udp

41 addr6: Optional[tuple[str , int]] # for wireguard udp

42

43

44 @dataclass

45 class PeerInfo:

46 addr4: Optional[tuple[str , int]] # for wireguard udp

47 addr6: Optional[tuple[str , int]] # for wireguard udp

48 pubkey: str # wireguard public key

49 vpn_addr4: str # IPv4 address inside the VPN

50 vpn_addr6: str # IPv6 address inside the VPN

51

52

53 @dataclass

54 class PeerList(Message):

55 peers: list[PeerInfo]

56

57

58 # quick and dirty message packing: gzipped json

59

60

61 def pack(msg: Message):

62 return gzip.compress(json.dumps ({’type’: type(msg).__name__ , ** asdict(msg)

}).encode ())

63

64

65 def unpack(data) -> Optional[Message]:

66 try:

67 obj = json.loads(gzip.decompress(data).decode ())

68 except (BadGzipFile , JSONDecodeError):

69 return None

70 type = obj[’type’]

71 del obj[’type’]

72 if type == ’PeerHello ’:

73 # rewrite list to tuple

74 for name in [’addr4’, ’addr6’]:

75 if obj[name] is not None:

76 obj[name] = tuple(obj[name])

77 return PeerHello (**obj)

78 elif type == ’PeerList ’:

79 return PeerList ([PeerInfo (** peer) for peer in obj[’peers’]])

80 raise ValueError(type)

F wg.py

1 import logging

2 import os

3 import socket

4 import subprocess

5 import tempfile

6 import time

7 import uuid

8 from abc import ABC , abstractmethod

9 from dataclasses import dataclass

10 from pathlib import Path

11 from threading import Thread

12 from typing import Optional

Marijn Valks, Robin Slot PAGE 24 OF 31

PROJECT REPORT

13

14 import udp

15 from messages import PeerInfo

16

17 log = logging.getLogger(__name__)

18

19 def create_tempfile(content: bytes , suffix: Optional[str] = None) -> str:

20 fd, temp_path = tempfile.mkstemp(suffix=suffix)

21 with os.fdopen(fd, ’wb’) as temp_file:

22 temp_file.write(content)

23 return temp_path

24

25

26 def run(command: list[str],

27 check: bool = True ,

28 stdin: Optional[bytes] = None ,

29 capture_output: bool = False) -> Optional[bytes]:

30 log.debug(’running command: %s’, ’ ’.join(command))

31 result = subprocess.run(command , check=check , capture_output=

capture_output , input=stdin)

32 return result.stdout.decode () if capture_output else None

33

34 @dataclass

35 class WGManager(ABC):

36 if_name: str

37 privkey: str

38 pubkey: str

39 listen_port: int

40 ipv6: bool

41 addr4: str

42 addr6: str

43 relay_endpoint: str

44 mtu: int = 1380

45

46 @abstractmethod

47 def create_interface(self , callback) -> None:

48 pass

49

50 @abstractmethod

51 def remove_interface(self , callback) -> None:

52 pass

53

54 @abstractmethod

55 def list_peers(self) -> list[str]:

56 pass

57

58 @abstractmethod

59 def add_peer(self , pubkey: str , endpoint: str , keepalive: int , allowed_ips

: list[str]) -> None:

60 pass

61

62 @abstractmethod

63 def remove_peer(self , pubkey: str) -> None:

64 pass

65

66 @abstractmethod

67 def update_peer(self , pubkey: str , endpoint: str , keepalive: int) -> None:

68 pass

69

70 @abstractmethod

71 def peer_rx(self , pubkey: str) -> int:

72 pass

73

74 def update_peers(self , peers: list[PeerInfo]):

75 current_pubkeys = self.list_peers ()

76 log.debug(’current peers: %s’, current_pubkeys)

77

78 for peer in peers:

79 if peer.pubkey == self.pubkey or peer.pubkey in current_pubkeys:

80 continue

Marijn Valks, Robin Slot PAGE 25 OF 31

PROJECT REPORT

81

82 # If multiple peers are added , they need to be added at the same

time , because

83 # UDP hole punching and relay fallback are time -sensitive.

84 Thread(target=self.set_up_peer_connection , args=(peer ,)).start()

85

86 # Remove local peers that are no longer known by the server

87 active_pubkeys = {peer.pubkey for peer in peers}

88 for pubkey in current_pubkeys:

89 if pubkey not in active_pubkeys:

90 log.info(’removing peer: %s’, pubkey)

91 self.remove_peer(pubkey)

92

93 def _find_source_ip(self , dest_ip: str) -> str:

94 # There must be a better way...

95 output = run([’ip’, ’route’, ’get’, dest_ip], capture_output=True)

96 dev = False

97 for part in output.split():

98 if dev:

99 iface = part.strip ()

100 break

101 dev = part.strip() == ’dev’

102

103 output = run([’ip’, ’addr’, ’show’, iface], capture_output=True)

104 inet = False

105 for part in output.split():

106 if inet:

107 return part.strip ().split(’/’)[0]

108 inet = part.strip() == ’inet’

109

110 def set_up_peer_connection(self , peer: PeerInfo):

111 peer_addr = None

112 if self.ipv6 and peer.addr6:

113 # can only connect to IPv6 -only host directly

114 peer_addr = peer.addr6

115 elif not self.ipv6 and peer.addr4:

116 # can connect to IPv4 -only or dual stack host

117 peer_addr = peer.addr4

118

119 allowed_ips = [f’{peer.vpn_addr4 }/32’, f’{peer.vpn_addr6 }/128’]

120

121 if not peer_addr:

122 log.info(’peer %s uses different address family , must use relay’,

peer.pubkey)

123 self.add_peer(peer.pubkey , self.relay_endpoint , 25, allowed_ips)

124 return

125

126 log.info(’trying p2p connection to peer: %s %s’, peer.pubkey ,

peer_addr)

127

128 # UDP hole punching

129 try:

130 source_ip = self._find_source_ip(peer_addr [0])

131 source = (source_ip , self.listen_port)

132 udp.send(b’’, source , peer_addr)

133 except PermissionError:

134 log.warning(’no permission to send raw udp for hole punching , are

you root?’)

135 # Add peer with low keepalive

136 endpoint = f’{peer_addr [0]}:{ peer_addr [1]}’

137

138 self.add_peer(peer.pubkey , endpoint , 1, allowed_ips)

139

140 # Monitor RX bytes. The other end has also set persistent -keepalive=1,

so we should see our

141 # received bytes increase with 32 bytes every second

142 rx_bytes = self.peer_rx(peer.pubkey)

143 time.sleep (7)

144 new_rx_bytes = self.peer_rx(peer.pubkey)

145 log.debug(’rx from %s to %s’, rx_bytes , new_rx_bytes)

Marijn Valks, Robin Slot PAGE 26 OF 31

PROJECT REPORT

146 if new_rx_bytes > rx_bytes:

147 log.info(’p2p connection appears to be working ’)

148 # Keepalive can now be increased to 25 seconds

149 self.update_peer(peer.pubkey , endpoint , 25)

150 return

151

152 # Even if the two ends of a peer to peer connection decide differently

on whether the

153 # connection is working , they will still end up both using the same

method , because

154 # WireGuard updates its endpoint when it receives data from a

different source address.

155

156 log.info(’p2p connection to %s failed , falling back to relay server ’,

peer.pubkey)

157 # Set endpoint to relay server , also increase keepalive

158 self.update_peer(peer.pubkey , self.relay_endpoint , 25)

159

160 @staticmethod

161 def gen_privkey ():

162 return run([’wg’, ’genkey ’], capture_output=True)[:-1]

163

164 @staticmethod

165 def gen_pubkey(privkey: str):

166 return run([’wg’, ’pubkey ’], stdin=privkey.encode (), capture_output=

True)[:-1]

167

168 # Documentation: https :// github.com/Derkades/os3 -wg -p2p/issues /4# issuecomment

-1909762430

169 class NMWGManager(WGManager):

170 nm_uuid: Optional[str] = None

171 nm: Optional[’NM.Client ’] = None

172 glib_loop: Optional[’GLib.MainLoop ’] = None

173

174 def _get_connection(self):

175 return self.nm.get_connection_by_uuid(self.nm_uuid)

176

177 def _get_wireguard_setting(self):

178 con = self._get_connection ()

179 for setting in con.get_settings ():

180 if isinstance(setting , NM.SettingWireGuard):

181 return setting

182 return None

183

184 def _get_device(self):

185 return self.nm.get_device_by_iface(self.if_name)

186

187 def create_interface(self , callback):

188 self.glib_loop = GLib.MainLoop ()

189 Thread(target=self.glib_loop.run).start()

190

191 self.nm_uuid = str(uuid.uuid4 ())

192

193 GLib.idle_add(lambda: self._create_interface(callback))

194

195 def _create_interface(self , callback):

196 s_con = NM.SettingConnection.new()

197 s_con.set_property(NM.SETTING_CONNECTION_TYPE , ’wireguard ’)

198 s_con.set_property(NM.SETTING_CONNECTION_INTERFACE_NAME , self.if_name)

199 s_con.set_property(NM.SETTING_CONNECTION_ID , self.if_name)

200 s_con.set_property(NM.SETTING_CONNECTION_UUID , self.nm_uuid)

201

202 s_ip4 = NM.SettingIP4Config.new()

203 s_ip4.set_property(NM.SETTING_IP_CONFIG_METHOD , ’manual ’)

204 s_ip4.add_address(NM.IPAddress(socket.AF_INET , self.addr4 , 24))

205

206 s_wg = NM.SettingWireGuard.new()

207 s_wg.set_property(NM.SETTING_WIREGUARD_LISTEN_PORT , self.listen_port)

208 s_wg.set_property(NM.SETTING_WIREGUARD_PRIVATE_KEY , self.privkey)

209 s_wg.set_property(NM.SETTING_WIREGUARD_MTU , self.mtu)

Marijn Valks, Robin Slot PAGE 27 OF 31

PROJECT REPORT

210

211 profile = NM.SimpleConnection.new()

212 for s in (s_con , s_ip4 , s_wg):

213 profile.add_setting(s)

214

215 self.nm = NM.Client.new(None)

216

217 def add_callback(nm2 , result):

218 log.debug(’add_callback ’)

219 nm2.add_connection_finish(result)

220 callback ()

221

222 log.debug(’add_async ’)

223 self.nm.add_connection_async(connection=profile , save_to_disk=False ,

callback=add_callback)

224

225 def remove_interface(self , callback):

226 def delete_callback(a, res):

227 log.debug(’delete_finish ’)

228 a.delete_finish(res)

229 self.glib_loop.quit()

230 callback ()

231

232 def delete ():

233 log.debug(’delete connection ’)

234 con = self._get_connection ()

235 con.delete_async(callback=delete_callback)

236

237 def disconnect_callback(a, res):

238 log.debug(’disconnect_finish ’)

239 a.disconnect_finish(res)

240 delete ()

241

242 def disconnect ():

243 device = self._get_device ()

244 if device:

245 log.debug(’disconnect_async ’)

246 device.disconnect_async(callback=disconnect_callback)

247 else:

248 log.warning(’device does not exist , already disconnected?’)

249 delete ()

250

251 GLib.idle_add(disconnect)

252

253 def list_peers(self):

254 s_wg = self._get_wireguard_setting ()

255 return [s_wg.get_peer(i).get_public_key () for i in range(s_wg.

get_peers_len ())]

256

257 def update(self):

258 def reapply_callback(a, res):

259 log.debug(’reapply_callback ’)

260 a.reapply_finish(res)

261 log.debug(’peers after apply: %s’, self.list_peers ())

262

263 def reapply ():

264 log.debug(’reapply_async ’)

265 log.debug(’peers before apply: %s’, self.list_peers ())

266 con = self._get_connection ()

267 self._get_device ().reapply_async(con , 0, 0, callback=

reapply_callback)

268

269 def commit_callback(a, res):

270 log.debug(’commit_callback ’)

271 a.commit_changes_finish(res)

272 reapply ()

273

274 def commit ():

275 log.debug(’peers before commit_changes: %s’, self.list_peers ())

276 log.debug(’commit_changes_async ’)

Marijn Valks, Robin Slot PAGE 28 OF 31

PROJECT REPORT

277 con = self._get_connection ()

278 con.commit_changes_async(save_to_disk=False , callback=

commit_callback)

279

280 GLib.idle_add(commit)

281

282 def add_peer(self , pubkey: str , endpoint: str , keepalive: int , allowed_ips

: list[str]) -> None:

283 peer = NM.WireGuardPeer.new()

284 peer.set_endpoint(endpoint , allow_invalid=False)

285 peer.set_public_key(pubkey , accept_invalid=False)

286 peer.set_persistent_keepalive(keepalive)

287 for ip in allowed_ips:

288 peer.append_allowed_ip(ip.strip(), accept_invalid=False)

289

290 s_wg = self._get_wireguard_setting ()

291 s_wg.append_peer(peer)

292 self.update ()

293

294 def remove_peer(self , pubkey: str) -> None:

295 s_wg = self._get_wireguard_setting ()

296 pp_peer , pp_idx = s_wg.get_peer_by_public_key(pubkey)

297 if pp_peer:

298 s_wg.remove_peer(pp_idx)

299 self.update ()

300 else:

301 log.warning(’peer %s does not exist’, pubkey)

302 log.debug(’peers: %s’, self.list_peers ())

303

304 def update_peer(self , pubkey: str , endpoint: str , keepalive: int) -> None:

305 s_wg = self._get_wireguard_setting ()

306 pp_peer , pp_idx = s_wg.get_peer_by_public_key(pubkey)

307 if pp_peer:

308 peer = pp_peer.new_clone(True)

309 peer.set_endpoint(endpoint , allow_invalid=False)

310 peer.set_persistent_keepalive(keepalive)

311 s_wg.set_peer(peer , pp_idx)

312 self.update ()

313 else:

314 log.warning(’peer %s does not exist’, pubkey)

315 log.debug(’peers: %s’, self.list_peers ())

316

317 def peer_rx(self , pubkey: str) -> int:

318 log.warning(’cannot determine per -peer rx bytes using network manager ’

)

319 log.warning(’returning interface rx bytes , unreliable when multiple

peers are active ’)

320 try:

321 path = Path(’/sys/class/net’) / self.if_name / ’statistics ’ / ’

rx_bytes ’

322 return int(path.read_text(encoding=’utf -8’))

323 except FileNotFoundError:

324 log.warning(’cannot read rx_bytes ’)

325 return 0

326

327

328 class WGToolsWGManager(WGManager):

329 def create_interface(self , callback):

330 privkey_path = create_tempfile(self.privkey.encode ())

331 run([’ip’, ’link’, ’add’, self.if_name , ’type’, ’wireguard ’])

332 run([’wg’, ’set’, self.if_name , ’private -key’, privkey_path , ’listen -

port’, str(self.listen_port)])

333 run([’ip’, ’address ’, ’add’, self.addr4 + ’/24’, ’dev’, self.if_name])

334 run([’ip’, ’address ’, ’add’, self.addr6 + ’/64’, ’dev’, self.if_name])

335 run([’ip’, ’link’, ’set’, ’mtu’, str(self.mtu), ’up’, ’dev’, self.

if_name])

336 os.unlink(privkey_path)

337 callback ()

338

339 def remove_interface(self , callback):

Marijn Valks, Robin Slot PAGE 29 OF 31

PROJECT REPORT

340 run([’ip’, ’link’, ’del’, self.if_name])

341 callback ()

342

343 def list_peers(self) -> list[str]:

344 return run([’wg’, ’show’, self.if_name , ’peers ’], capture_output=True)

.splitlines ()

345

346 def add_peer(self , pubkey: str , endpoint: str , keepalive: int , allowed_ips

: list[str]) -> None:

347 run([’wg’, ’set’, self.if_name ,

348 ’peer’, pubkey ,

349 ’endpoint ’, endpoint ,

350 ’persistent -keepalive ’, str(keepalive),

351 ’allowed -ips’, ’, ’.join(allowed_ips)])

352

353 def remove_peer(self , pubkey: str) -> None:

354 run([’wg’, ’set’, self.if_name , ’peer’, pubkey , ’remove ’])

355

356 def update_peer(self , pubkey: str , endpoint: str , keepalive: int) -> None:

357 run([’wg’, ’set’, self.if_name , ’peer’, pubkey , ’endpoint ’, endpoint ,

’persistent -keepalive ’, str(keepalive)])

358

359 def peer_rx(self , pubkey: str) -> int:

360 output = run([’wg’, ’show’, self.if_name , ’transfer ’], capture_output=

True)

361 for line in output.splitlines ():

362 cols = line.split()

363 if cols [0]. strip () == pubkey:

364 return int(cols [1]. strip())

365 log.warning(’could not determine rx bytes for %s’, pubkey)

366 return 0

367

368

369 def get_wireguard(use_nm , *args) -> WGManager:

370 if use_nm:

371 import gi

372 gi.require_version("NM", "1.0")

373 from gi.repository import NM as NM2

374 from gi.repository import GLib as GLib2

375 global NM, GLib

376 NM = NM2

377 GLib = GLib2

378 return NMWGManager (*args)

379 else:

380 return WGToolsWGManager (*args)

G udp.py

1 import socket

2 import struct

3 from ipaddress import IPv4Address

4 import logging

5

6 log = logging.getLogger(’udp’)

7

8 # TODO: IPv6

9 # TODO: Run as helper program so main program doesn’t need root access

10

11 # UDP header (from RFC 768):

12 # 0 7 8 15 16 23 24 31

13 # +--------+--------+--------+--------+

14 # | Source | Destination |

15 # | Port | Port |

16 # +--------+--------+--------+--------+

17 # | | |

18 # | Length | Checksum |

19 # +--------+--------+--------+--------+

20 # |

21 # | data octets ...

Marijn Valks, Robin Slot PAGE 30 OF 31

PROJECT REPORT

22 # +---------------- ...

23 #

24 # Pseudo header for checksum:

25 # 0 7 8 15 16 23 24 31

26 # +--------+--------+--------+--------+

27 # | source address |

28 # +--------+--------+--------+--------+

29 # | destination address |

30 # +--------+--------+--------+--------+

31 # | zero |protocol| UDP length |

32 # +--------+--------+--------+--------+

33

34 def send(data , source_addr: tuple[str , int], dest_addr: tuple[str , int]):

35 if ’:’ in dest_addr [0]:

36 log.error(’IPv6 is not supported , cannot send to %s’, dest_addr)

37 return

38

39 log.debug(’sending UDP from %s to %s’, source_addr , dest_addr)

40

41 data_len = len(data)

42 udp_length = 8 + data_len

43 checksum = 0

44 pseudo_header = struct.pack(’!4 s4sBBH ’,

45 IPv4Address(source_addr [0]).packed ,

IPv4Address(dest_addr [0]).packed ,

46 0, socket.IPPROTO_UDP , udp_length)

47 udp_header = struct.pack(’!HHHH’, source_addr [1], dest_addr [1], udp_length

, 0)

48 checksum = _checksum_func(pseudo_header + udp_header + data)

49 udp_header = struct.pack(’!HHHH’, source_addr [1], dest_addr [1], udp_length

, checksum)

50 with socket.socket(socket.AF_INET , socket.SOCK_RAW , socket.IPPROTO_UDP) as

sock:

51 sock.sendto(udp_header + data , dest_addr)

52

53

54 def _checksum_func(data):

55 checksum = 0

56 data_len = len(data)

57 if (data_len % 2):

58 data_len += 1

59 data += struct.pack(’!B’, 0)

60

61 for i in range(0, data_len , 2):

62 w = (data[i] << 8) + (data[i + 1])

63 checksum += w

64

65 checksum = (checksum >> 16) + (checksum & 0xFFFF)

66 checksum = ~checksum & 0xFFFF

67 return checksum

Marijn Valks, Robin Slot PAGE 31 OF 31

	Introduction
	Structure

	Research question
	Research Question
	Scope

	Related work
	Background
	Current eduVPN architecture
	WireGuard architecture
	Different NAT types
	UDP hole punching
	STUN & TURN

	Methodology
	Techniques used to traverse NATs
	Testing methodoloy
	Preserving the integrity of the WireGuard protocol
	NetworkManager and rootless operation
	User-defined network approach

	Results
	Different scenarios
	Feasibility of UPnP
	eduVPN general working
	Separation of management connection and data stream
	Connection process
	eduVPN peer-to-peer hole punching working
	eduVPN peer-to-peer relay working
	Determination of peer-to-peer or relay
	IPv6
	Performance improvement

	Discussion
	Performance and availability
	Security
	Roaming

	Conclusion
	Future Work
	TCP Proxy
	Separation of relay server and management server
	Integration with eduVPN client

	README.md
	Peer to Peer WireGuard
	Requirements

	Server
	Client

	client.py
	server.py
	messages.py
	wg.py
	udp.py

