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Abstract
Once a powerful enough quantum computer is built, it will be able to decrypt
communications from the past. eduVPN is an open-source VPN service used to
securely connect to an institution’s network. In this paper, we will explore how we
can protect eduVPN traffic against future decryption by a quantum computer that
is able to decrypt currently used cryptography. Two contributions are described:
1. A protocol  that can be used to protect  against  an eavesdropper with a

quantum computer. This protocol uses TLS-PSK and has been implemented
in an Android application and in an Apache web server.

2. A modified version of the eduVPN API that protects the VPN connection
against an eavesdropper with a quantum computer. This protocol uses its
own  symmetric  encryption  and  has  been  implemented  in  an  Android
application and into the eduVPN web application.
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1 Introduction

eduVPN is a service offered by GEANT based on open source software. It is used by
more than 140 organizations world-wide. Organizations using eduVPN mainly consist of
NRENs, universities and research institutions[1]. Using eduVPN, students and employees
can access the organization’s network without having to be physically present at the
organization. eduVPN also offers a VPN connection which can be used to access the
internet. Using this VPN connection will prevent against man-in-the-middle attacks and
eavesdropping in the network of the user.

The cryptography used by eduVPN is not quantum resistant. When a quantum computer
is built that is powerful enough to run Shor’s algorithm[2], VPN traffic could be decrypted
and the privacy of users violated.

The goal of the project is to research how to prevent eduVPN traffic that is stored now
from being decrypted later when a quantum computer becomes available, and to build a
Proof of Concept demonstrating a quantum-resistant eduVPN.

1.1 Scope / Attack model

We assume that, right now, no sufficient quantum computer exists that can break cryp-
tography. Therefore, we will only protect against an attacker which can not do an active
MiTM attack with a quantum computer right now.

eduVPN supports 2 VPN protocols: OpenVPN and WireGuard. Because OpenVPN is
planned to be removed in the future[3], we will only consider attacks against WireGuard.

1.2 Outline

First, we will explain how a post-quantum key exchange works in section 2. Section 3
presents the main research question and sub-questions. Section 4 discusses related work.
Section 5, 6 and 7 all answer a different sub-question. Section 8 presents the conclusions.
Finally, in section 9 future work is discussed.

2 Preliminary: Post-quantum key exchange

A post-quantum key exchange works in a different way than Diffie-Hellman. To understand
a post-quantum key exchange, we compare it to a Diffie-Hellman key exchange and public-
key encryption.
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Abbreviations

pk public key
sk secret key (also private key)
c ciphertext
ss shared secret
DH Diffie-Hellman function
KDF Key Derivation Function

Diffie-Hellman
Used in TLS and WireGuard

Alice Bob

(pkA, skA)← KeyGen() (pkB, skB)← KeyGen()pkA

pkB
ss := DH(skB, pkA)
key := KDF (ss)ss := DH(skA, pkB)

key := KDF (ss)

Figure 1: Diffie-Hellman key exchange

In Diffie-Hellman, Alice and Bob both generate a keypair. They both send the public key
to the other person and then generate the shared secret using their own private key and
the other person’s public key.

Using public key cryptosystem
Used in TLS ≤ 1.2 with RSA

Alice Bob

(pkA, skA)← KeyGen() pkA
K ← GenRandomKey()
c← Encrypt(K, pkA)
key := K

c

key := Decrypt(K, skA)

Figure 2: Key exchange using public key cryptosystem

2



Key encapsulation mechanism [14]
Used in post-quantum key exchange

Alice Bob

(pkA, skA)← KeyGen() pkA

(c, K)← Encaps(pkA)
key := K

c

key := Decaps(skA, c)

Figure 3: Key exchange using key encapsulation mechanism

With a public key cryptosystem and a key encapsulation mechanism (KEM) Alice generates
a keypair and sends this to Bob. Bob generates a ciphertext which Alice decrypts or
decapsulates.

As can be seen in Figure 1, 2 and 3, a KEM is more similair to using a public key
cryptosystem than to Diffie-Hellman. This is because KEMs are built on top of public-key
encryption schemes[4]. An important difference between Diffie-Hellman and the 2 other
systems, is that in Diffie-Hellman, both parties can publish their public keys and derive a
shared secret without having to interact with each other[5]. With the other 2 systems,
one party has to encapsulate (Encaps) the public key and send the encapsulation to the
other party, which decapsulates (Decaps) the ciphertext. This requires interaction. In
TLS, Diffie-Hellman can be replaced by a KEM because the interaction is already present
in the protocol. This is however not the case in WireGuard.

There is one post-quantum key exchange algorithm in the NIST post-quantum competition
that is more similair to a Diffie-Hellman key exchange: SIKE[6]. However, SIKE has been
shown to be insecure[7].

After using Diffie-Hellman (DH function), the key should be generated using key derivation
function (KDF). In the case of post-quantum KEMs, this is not necessary because the
KEM internally already uses a KDF or hashing algorihtm.

Note that all these key exchanges do not authenticate the other participant and thus only
protects against a passive man in the middle.

3 Research question

The main research question that will be answered is: How can eduVPN traffic be protected
against decryption by quantum computers?

To answer this research question, the following sub-questions will be answered:
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• In section 5: What data is sent between the eduVPN client and the server?
• In section 6: Which data should be protected against future decryption?
• In section 7: How can confidential data be protected against decryption by quantum

computers?

4 Related work

This paper is not the first paper that secures existing software against the threat of
quantum computers. Prior work has been done on securing both TLS and WireGuard
against this threat. Both protocols are used in eduVPN to protect data. We discuss how
we protect against this threat in section 7.

4.1 Post-quantum TLS

In Prototyping Post-Quantum and Hybrid Key Exchange and Authentication in
TLS and SSH[8] E. Crockett et al. implement several post-quantum key exchanges and
authentication in TLS 1.2, TLS 1.3 and SSHv2. The TLS implementation is done in forks
of OpenSSL, the same library is used on eduVPN servers to provide TLS.

In Post-Quantum TLS Without Handshake Signatures[9], P. Schwabe et al. present a
version of TLS that uses a post-quantum key exchange and also uses a key exchange for
authentication. The implementation is done using a fork of OpenSSL, the same library is
used on eduVPN servers to provide TLS. The performance of their TLS variant (KEMTLS)
is compared with TLS 1.3.

4.2 Post-quantum WireGuard

In Tiny WireGuard Tweak[10] J. Appelbaum et al. present a modified version of Wire-
Guard that protects against future decryption by a quantum computer in case the adversary
does not have access to the used public keys.

In Post-quantum WireGuard [5] A. Hülsing et al. present a modified version of WireGuard
that uses a post-quantum key exchange to protect against future decryption by quantum
computers. This modified variant also provides post-quantum authentication.

5 What data is sent between the eduVPN client and
server?

eduVPN offers a way to securely connect to the network of the institution. This has been
visualized in Figure 4.

To investigate the communication between the server and client, a test eduVPN server
was used and a rooted Android phone with a custom certificate authority was used to
connect to this server. This custom certificate authority in combination with mitmproxy
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and Wireshark allows to inspect the traffic of the Android phone. The investigation was
done using eduVPN server version 3.2.2 on Debian 11 and eduVPN Android app version
3.0.1 on LineageOS 20 (Android 13) on a OnePlus 5. The traffic has been visualized in
Figure 5.

Figure 4: Visualization of a connection to an institution using the eduVPN Android App

Figure 5: Sequence diagram of the data flow between components when connecting using
WireGuard using the eduVPN Android client
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Figure 5 contains multiple entities:

• The user.
• The eduVPN Android app.
• The browser on the phone of the user. We assume this browser supports TLS 1.3.
• The Discover Server. This server is used by the eduVPN clients to retrieve a

list of known eduVPN servers. The user can then easily search for and select his
organization.

• The eduVPN server. This is the VPN server which is managed by the organization.
• The identity provider. This is the identity provider used by the organization. This

could be for example Active Directory or an LDAP server.

As can be seen in Figure 5, there are 2 protocols in use that protect data: TLS 1.3 and
WireGuard.

6 What data should be protected against future
decryption?

An overview of the connection flow and the data send can be seen in Figure 5. For all
data has been determined if this data is confidential and for how long. The results can be
seen in Table 1.

Table 1: Data send in eduVPN and its confidentiality
NumberData Confidential Confidential time

1 Organization and corresponding
server list

#

2 API endpoints #

3 OAuth authorization request #

4-5 Redirect to SAML endpoint #

6 Redirect to Identity provider
with SAML request

#

7 Redirect to Identity provider
with SAML request

#

8 Login page #

9 Username ! Forever
9 Password ! Until password change
10-11 SAML response ! [11] 1 8 hours (by default)
12-13 Redirect to OAuth endpoint with

OAuth data
#

14 Approval page #

15 Approved + OAuth data #

16 OAuth Authorization code #

17 OAuth Verifier ! Until first use, this request
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NumberData Confidential Confidential time

17 OAuth data excluding verifier #

18 OAuth access token ! 1 hour (by default)
18 Refresh token ! 90 days (by default) or

until first use
19 Authorization and API endpoints #

20-21 Profile list #

22 WireGuard public key, selected
profile

#

23 Assigned public IP ! Forever
23 WireGuard configuration

excluding public IP
#

24 WireGuard VPN connection ! Forever
25 Disconnect #

Although it is hard to estimate when exactly a quantum computer will be build that can
break existing cryptography, if we assume it will be here in 5 years, we can determine
which data should be protected.

As can be seen in Table 1, the following data is confidential but not long enough confidential
to need protection against future decryption:

• Password: A password is only confidential until the user changes this password. To
protect the password, a user should change his password after it can be sent over a
post-quantum connection. We assume the user will change his password then.

• SAML response: The SAML response expires after 8 hours (by default) and can not
be used after that time.

• OAuth verifier: As soon as the OAuth verifier is sent over the TLS connection, it is
retrieved by the server and becomes unusable.

• OAuth access token: OAuth access tokens expire after 1 hour and can not be used
after expiry.

• OAuth refresh token: OAuth refresh tokens can not be re-used, after it is used, it
becomes invalid. If it is not used, it becomes invalid after 90 days.

As can be seen in Table 1, we would like to protect the following data forever:

• Username
• Assigned public IP
• WireGuard VPN connection

The username and password is sent between the browser and an identity provider. This is
for example a UvA student logging in with his UvA account to a Microsoft login page.
This interaction does not involve any systems that eduVPN controls, therefore we will
leave the username out-of-scope.

1We assume the SAML response only contains a pseudonym of the user. This might not be the case on
all eduVPN deployments.
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7 How can confidential data be protected against
decryption by quantum computers?

As determined in section 6, both the data send over the VPN connection and the IP that
is assigned to the user is confidential data that should be protected. To answer why this
confidential data is currently not protected, we will first analyze why the protocols that
should protect confidential data do not protect against quantum computers. Then we will
describe possible solutions.

7.1 Post-quantum analysis of protocols in eduVPN

To determine if confidential data is currently protected against quantum computers, the
protocols used by eduVPN that protect confidential data, TLS and WireGuard, will be
analyzed.

7.1.1 What is quantum secure?

We define a cryptographic primitive or a cryptographic protocol as quantum secure if it is
at least as hard to crack as AES-128, with or without a quantum computer. This is the
first security level as defined by NIST, NIST defines level 1 as[12]:

Any attack that breaks the relevant security definition must require computa-
tional resources comparable to or greater than those required for key search
on a block cipher with a 128-bit key (e.g. AES128).

Level 5, the highest security level, has the same definition but with a 256 bit key (e.g. AES
256)[12].

We will also refer to quantum secure as post-quantum.

7.1.2 WireGuard

WireGuard is the VPN protocol used to connect to the organization’s network. Using the
previously established TLS connection to the eduVPN server, the public keys used for the
WireGuard connection are exchanged.

WireGuard uses the following cryptographic primitives[13]:

Table 2: Cryptographic primitives in WireGuard

Name Used for Quantum secure

Necessary against future
decryption by quantum
computer

ECDHE2 Key
exchange

# [14–16] !
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Name Used for Quantum secure

Necessary against future
decryption by quantum
computer

ChaCha20
(256 bit)

Symmetric
encryption

! [16] 3 (level 5) !

Poly1305
(128 bit)

MAC4 ! [16] (level 5) #

BLAKE2s Hashing and
HMAC5

Assumed secure #

SipHash Hash table Assumed secure #

HKDF3 Key
derivation

Assumed secure #

Assumed secure means no source was found claiming either secure or insecure with regards
to quantum computers.

If the key-exchange or the symmetric encryption can be broken by an attacker, data can
be decrypted. As can be seen from Table 2, the only cryptographic primitive that is
problematic is ECDHE. ECDHE is necessary to prevent decryption but can be broken by
a quantum computer.

7.1.3 TLS 1.3

TLS is the cryptographic protocol used by for example your web browser to securely
connect to websites. Contrary to WireGuard, it has crypto-agility, meaning it supports
and can switch between different cryptographic primitives.

TLS provides confidentiality and authentication using different different cryptographic
primitives.

7.1.3.1 Authentication Authentication in TLS is provided by signatures. Different
signature algorithms can be used in TLS[17]:

• RSA
• ECDSA
• EdDSA

All three signature algorithms are not quantum secure[16]. Once there is a sufficient
quantum computer, TLS 1.3 signatures could be forged.

All three signature algorithms are assumed to be secure against attacks by classical
computers. TLS authentication is only necessary against an active MiTM. As determined
in our attack model, we do not aim to protect against an active MiTM by a quantum

2Elliptic-curve Diffie–Hellman Ephemeral. WireGuard uses ECDHE with Curve25519.
3The source only mentions Salsa20, we assume it has at least the same security as its successor ChaCha20.
4Message authentication code.
5Hash-based message authentication code.
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computer. The authentication provided by TLS is therefore good enough under our attack
model. It does thus not have to be replaced by a post-quantum version.

7.1.3.2 Confidentiality and integrity Confidentiality and integrity in TLS are provided
by different cryptographic primitives. Because of the crypto agility of TLS, the actually
used cryptography can differ depending on the client and server.

Both the eduVPN server and the Android client[18] support the following TLS 1.3 cipher
suites:

• TLS_AES_128_GCM_SHA256
• TLS_AES_256_GCM_SHA384
• TLS_CHACHA20_POLY1305_SHA256

The server supports more cipher suites, but those are not enabled by default, and since
the Android client does not support it, will not be used.

Table 3: Cryptographic primitives in TLS 1.3 cipher suites.

Name Used for Quantum secure

Necessary against future
decryption by quantum
computer

AES (128
bit)

Symmetric
encryption

! [12] (level 1) !

AES (256
bit)

Symmetric
encryption

! [12] (level 5) !

ChaCha20
(256 bit)

Symmetric
encryption

! [16] 6 (level 5) !

GCM MAC7 ! [16] (level 5) #

Poly1305
(128 bit)

MAC8 ! [16] (level 5) #

SHA256 Hashing ! [12] (level 2) #

SHA384 Hashing ! [12] (level 4) #

Since TLS 1.3, the key exchange method is not part of the cipher suite anymore. The key
exchange is necessary against future decryption by quantum computers. TLS 1.3 supports
the following key exchange methods[17]:

Table 4: Key-exchange methods in TLS 1.3
Name Quantum secure

ECDHE9 # [14–16]
DHE10 # [16]

6The source only mentions Salsa20, we assume it has at least the same security as its successor ChaCha20.
7Message authentication code.
8Message authentication code.
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Name Quantum secure
PSK-only Depends on PSK
PSK with (EC)DH Depends on PSK

As can be seen from Table 4, the (EC)DHE key exchange is problematic. Using a PSK
(Pre-Shared Key) option is save, but this option does not actually do a key exchange. The
PSK option uses a key that has to be securely exchanged outside of the TLS connection
and can thus not be used as a drop-in replacement for EC(DHE).

7.2 Post-quantum TLS

To secure the complete TLS connection, a post-quantum key exchange has to be done.
This can be done over the plain as described in section 7.2.1 or over an existing TLS
connection as described in section 7.2.2.

7.2.1 Post-quantum key exchange in TLS

Instead of Diffie-Hellman we could replace Diffie-Hellman with a post-quantum KEM.
To prevent classical computers from being able to decrypt the TLS connection in case
the KEM is discovered to be insecure, a post-quantum KEM should be used alongside
Diffie-Hellman. This could be implemented using an OpenSSL provider or by replacing
the TLS implementation.

7.2.1.1 OpenSSL provider The eduVPN servers use an Apache module to provide TLS
functionality. This Apache module uses OpenSSL to provide TLS. OpenSSL providers
can add cryptography dynamically using a module. Creating an OpenSSL providers that
adds post-quantum KEMs to OpenSSL is possible with OpenSSL version 3 and has been
done by the Open Quantum Safe project[19]. Unfortunately, as of 13 February 2023, only
8% of eduVPN servers use a Linux distribution with OpenSSL 3[1]. Such a solution can
thus not be rolled out any time soon.

7.2.1.2 Replacing TLS implementation The implementation of TLS used on the client
and on the server could be modified to also do a post-quantum key exchange alongside
Diffie-Hellman, as done in [8] and [9]. The problem with this solution is that it requires
to replace the existing TLS implementations with our own. On the server this means
that we are now responsible for updating security critical software, instead of the OS
vendor (i.e. Debian or Red Hat). This also means that in case a new version of the TLS
implementation is released to fix a security issue, we now have to update our modified
implementation before the eduVPN servers can be updated. This increases the time in
which a security issue can be abused, and is thus undesirable.

9Elliptic-curve Diffie–Hellman Ephemeral. WireGuard uses ECDHE with Curve25519.
10Finite field Diffie-Hellman Ephemeral.
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Another problem with adding a post-quantum key exchange to TLS is that routers or other
middleboxes might refuse the connection because it does not understand the modified
protocol[20]. Such middleboxes caused delays in the rollout of TLS 1.3[21].

7.2.2 Post-quantum key exchange over TLS

As determined in 6.1, only the key-exchange part of TLS does not provide the necessary
security. Both TLS and WireGuard specify a pre-shared key mode in their specification[13].
If we can exchange a key in a way that a quantum computer can not recover this key,
we can set this key as the pre-shared key for TLS (TLS-PSK). TLS will then derive the
actual key used for symmetric encryption using a key derivation function from parameters
including the pre-shared key.

To prevent problems with middleboxes and to prevent an active MiTM by a classical
computer, we can do a key exchange over a normal TLS connection. We can then use the
new shared secret as the key used for a new TLS connection.

Figure 6: Messages used to securely share a pre-shared key used for the WireGuard VPN
connection using TLS-PSK

As can be seen in Figure 6, securely exchanging a key that can be used for WireGuard
consists of the following steps:

1. Establish a TLS connection to the server.
2. Do a post-quantum key exchange over the TLS connection (for example using

Kyber).
3. Use the shared secret from the post-quantum key exchange in the TLS connection.
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4. Use the secure TLS connection to share a randomly generated pre-shared key.
5. Use the pre-shared key send in the previous step for the WireGuard VPN connection.

With both WireGuard and TLS, the PSK is not directly used, it is combined with another
shared secret established using an ECDH key exchange. In the case of WireGuard, this is
required by the protocol. In the case of TLS, both are allowed by the protocol, but the
TLS implementation used on Android only supports the TLS-PSK variant that also does
an ECDH key exchange.

The mechanism used to establish a post-quantum TLS connection (step 1, 2 and 3) are
not eduVPN specific. This mechanism can thus be used by anyone.

7.2.2.1 Implementation eduVPN uses Apache as web server. To add this functionality
to Apache, an Apache module was created that handles requests to /.well-known/qkem.
The module uses Kyber as post-quantum KEM. A client can send his Kyber public key
to this endpoint and the server will return a ciphertext (step 2). The client can decrypt
this ciphertext to recover the shared secret, which can then be used as TLS pre-shared
key (step 3). When a client connects, it sends the PSK identity that it received from
the server to the server in a new TLS connection, the server can then lookup the shared
secret.

In case the server does not have the qkem Apache extension, a call to /.well-kwown/qkem
will return a 404 not found, and the client can continue using the existing TLS connection.

The source code of the Apache module has been published.

On both the server and the client, some issues had to be resolved to get TLS-PSK
working.

7.2.2.1.1 Server implementation challenges On the server side, a workaround is
necessary to prevent Apache from terminating the connection. This is caused by OpenSSL
setting a property on the PSK connection that client verification was not done[22]. This
causes Apache to terminate the connection. Unfortunately, the workaround does not
use the OpenSSL public API[23], which means the workaround can break in case of an
OpenSSL update, causing Apache to terminate TLS-PSK connections. When a security
update for OpenSSL is released that is incompatible with the Apache module because
of the non-public API, the module would have to be disabled or the OpenSSL update
delayed. Both situations are not desirable.

7.2.2.1.2 Client implementation challenges On the client side, the TLS library had to
be replaced by one that supports TLS-PSK (Bouncy Castle instead of Conscrypt). Even
though it supported TLS-PSK, the library still had to be modified to be able to set a
PSK.

The library used to make HTTP calls (which uses the TLS library) needed multiple
workarounds to prevent it from crashing. These crashes occur when the library tries to
verify the validity of TLS certificates. TLS-PSK does not use certificates, which causes
the application to crash.
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7.3 Post-quantum VPN configuration

Securing the complete TLS connection, as described in section 7.2, is possible, but might
break on an OpenSSL update. Therefore, a different solution was developed which
securely exchanges the VPN configuration which includes the assigned public IP and the
WireGuard VPN connection.

First, the design is explained. Then the choice of post-quantum KEM is discussed. We
then determine how multiple key exchanges can be used and we discuss the symmetric
encryption. Lastly, we discuss the choice of post-quantum library.

7.3.1 Design

Figure 7: Messages used to securely share the PSK used for the WireGuard VPN connec-
tion using an API call

As can be seen in Figure 7, securely exchanging a VPN configuration consists of the
following steps:

1. Establish a TLS connection to the server.
2. Do a post-quantum key exchange over the TLS connection (for example using

Kyber). Protect the VPN configuration including the public IP and the WireGuard
pre-shared key using the shared secret from the post-quantum key exchange.

3. Use the pre-shared key for the WireGuard VPN connection.

As can be seen in step 2, on top of the symmetric encryption used by TLS, another layer
of symmetric encryption was added to secure the VPN configuration.

7.3.2 Choice of post-quantum KEM

In 2016, NIST announced a competetition for post-quantum cryptography[24]. The selected
algorithms will be standardized by NIST. NIST called for proposals for digital signature,
public-key encryption and key-exchange algorithms. 69 public-key encryption algorithms
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where published for round 1. In July 2022 NIST selected Kyber to be standardized and
announced a 4th round to standardize one of[6]:

• BIKE
• Classic McEliece
• HQC
• SIKE

In august 2022, SIKE was broken[7] and will thus not be standardized. The fact that
SIKE has only been broken in round 4 of the NIST competition raises questions about the
security of other new KEMs. Post-quantum KEMs, especially lattice based KEMs, are
considered risky[25]. These post-quantum KEMs have been around for shorter than RSA
and AES and have thus received less security analysis. To not depend on the security
of one post-quantum KEM, we would like to use 2 KEMs. If one breaks, data is still
protected as long as the other KEM is secure. Preferably, the used KEMs should not rely
on the same mathematical problem.

The public keys of Classic McEliece are at least 1MB for the level 5 parameters. For
comparison, Kyber public keys for level 5 are only 1568 bytes. In our protocol the
public keys have to be send over the network. Big public keys will cause a delay on slow
connections which makes Classic McEliece unfit for our purpose.

In our implementation we have selected BIKE as the second KEM, because the HQC
implementation in the library we use on the server is not up-to-date.

In case one of the KEMs is broken, the broken KEM should be replaced with another one.
To facility this cryptographic agility, the server lists the KEMs it supports and then the
client can select the KEMs that it wants to use. In the current implementation Kyber,
BIKE and Frodokem are supported as those are the only KEMs that both the library
used on the client (Bouncy Castle) and the library used on the server (liboqs) support.
The server thus sends a list of the supported KEMs to the client. The client then decides
which KEMs and how many it is going to use, in our implementation Kyber and BIKE.
With an update of either the client or the server, a broken KEM can be disabled and in
this case Frodokem will then automatically replace the broken KEM. Note that right now
one of the three KEMs can be removed from the server without consequence because all
clients will either support no post-quantum crypto (old clients) or all three (new clients).
If in the future another KEM is added, old KEMs should not be removed from the server
since old clients might not support the new KEM.

In case all used KEMs are broken, our connection is still secure against attacks by classical
computers, this protection is provided by TLS.

We do not use the 90s variant of Kyber as this variant will not be standardized by NIST.

7.3.3 Combining shared secrets

Both TLS and WireGuard only do one key-exchange. Our protocol does two. When
performing multiple key exchanges, the result will be multiple keys. We can only use one
key for symmetric encryption, therefore the keys have to be combined. As explained in
section 7.3.2, we want our system to still be secure if one key exchange is broken, therefore
we need to determine how we can securely combine the keys.
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Giacon et al. show possible ways to combine keys from KEMs in [26]. The most simple
one shown is the XOR combiner. Giacon et al. show that the XOR combiner retains CPA
security but does not retain CCA security.

What this means is that the XOR combiner is not safe against an active MiTM, but is
safe against a passive attacker. We assume TLS can not be broken right now and thus
TLS provides the authentication and integrity which makes an active attack against the
post-quantum key exchange impossible. We can therefore safely use the XOR combiner.

Using a CCA secure combiner will not help against an active MiTM, because an attacker
could just remove the public keys from the VPN configuration request that the clients
sends. This would result in the server not encrypting the configuration because of
backward-compatibility.

Unlike with Diffie-Hellman, we do not need to use a KDF on the shared secret. The
shared secret of the KEMS, Kyber, BIKE, HQC and FrodoKEM can directly be used for
symmetric encryption[[4],Appendix;[27],2.3.2;[28],2.2.11;].

Note that Kyber, BIKE and HQC produce a shared secret of 256 bits. HQC produces a
shared secret of 512 bits. To XOR the HQC shared secret with another KEM producing
a 256 bit shared key, we can use the first 256 bits of the 512 bits shared secret. This can
be done without losing security, as the shared secret from HQC is a 512 bit output of the
SHAKE256 hashing algorithm.

7.3.4 Symmetric encryption

After exchanging a 256 bit key (PQ key in Figure 7), we still have to somehow protect our
data with this key. This can be achieved by using a symmetric encryption algorithm.

To achieve level 5 security, we will need a symmetric encryption algorithm that has
security level 5. Both AES-256 and ChaCha20 would be suitable, they both provide level
5 security[12,16]. The implementation uses ChaCha20. Since integrity and authentication
is already provided by TLS, we do not need a message authentication code. ChaCha20
without a message authentication code is not provided by the public APIs of the cryptog-
raphy libraries already in use on both the client and the server, therefore we will still use
an authentication code by using ChaCha20-Poly1305.

ChaCha20 requires both a key and a nonce for encryption. The nonce does not have to
be random, but should never be reused with the same key. Since every encapsulation of
a public key generates a new shared secret, a shared secret will only ever be used once.
Combining multiple shared secrets still produces a key that will only ever be used once.
Therefore, instead of choosing a nonce and sending it over to the other party, we can
just fix the nonce to a known value. The nonce has to be 12 bytes, therefore the value
eduVPNeduVPN was chosen for the nonce.

7.3.5 Choice of post-quantum library

The implementation of post-quantum KEMs can be provided by multiple libraries. The
client and server are written in different programming languages, which result in a different
choice for the post-quantum library on the client and server.
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Table 5: Considered post-quantum cryptography libraries
Name Maintainer API Kyber BIKE HQC FrodoKEM

liboqs Open Quantum Safe C ! ! # 11 !

Bouncy
Castle

Legion of the Bouncy
Castle

Java ! ! ! !

CIRCL Cloudflare Go ! # # !

Table 5 shows the libraries with post-quantum KEM implementations that have been
considered. KEM support as of 9 February 2023.

The Bouncy Castle library exposes a Java API which can be directly used in the Android
App. Although a Java wrapper for liboqs exists, at the time of writing, 11 February 2023,
it is outdated. On the client we thus chose to use Bouncy Castle.

The server code that handles API requests is written in PHP. No PHP implementation or
wrapper for post-quantum KEMs could be found, therefore the PHP Foreign Function
Interface (FFI) was used to call the liboqs C API. Even though the exposed API is C,
for all listed KEMs in the table, on x86_64, an optimized implementation written in
assembly is used if the CPU supports the required CPU extensions.

8 Conclusions

An adversary that stores data now is able to decrypt this data later. To protect against
this attack, we determined what confidential data is sent between the eduVPN client and
server and how long this data should be protected. We then determined how this data
can be protected against decryption by quantum computers.

To protect against future decryption, the protocols in use (TLS and WireGuard) do not
have to be replaced. Both WireGuard and TLS can be protected against future decryption
by quantum computers by using a pre-shared key that quantum computers can not recover.
Exchanging this pre-shared key can be securely done by a post-quantum key exchange
over a TLS connection. The shared secret can then be used to encrypt confidential data
and the WireGuard pre-shared key. The WireGuard pre-shared key can be used to protect
the WireGuard connection.

We presented two methods:

• Exchanging a key by calling an API implemented in the web server and using this
key as the pre-shared key for TLS. This protects the complete TLS connection. This
is possible on Android and with an Apache server using an Apache module. The
implemented Apache module is however not guaranteed to keep working in case of
OpenSSL updates.

• Exchanging a key over the eduVPN API and using this key to encrypt confidential
data and a WireGuard pre-shared key.

11KEM implementation present, but outdated version of KEM.
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Both methods have been implemented and work. However, there are still improvements
that could be done. In the next section, Chapter 9: Future work, we will discuss these
improvements including OpenVPN support and making sure different post-quantum library
implementations are compatible with each other.

9 Future work

9.1 Post-quantum library compatibility evaluation

On the client and the server two different implementations of the same KEMs are used.
Although the implementations are based on the same specification, there could be an
edge case with a bug causing the implementations to be incompatible with each other. To
detect this kind of bugs, a setup could be created in which the implementations are tested
with each other using a lot of different public keys. The client implementation creates
a public key, from which the server implementation generates a ciphertext, which the
client implementation then decapsulates. The shared secret should then be compared. To
find bugs quicker, the normally random input could be replaced by input from a guided
fuzzer.

Another method to prevent incompatibilities is to use the same library on both the client
an server. This could be achieved by updating the Java wrapper of liboqs and using it on
the client.

9.2 Client support

Besides a client for Android, eduVPN also has clients for Linux, Windows, macOS and
iOS. Support for the protocol presented in this paper should also be added to those
clients.

9.3 OpenVPN

Administrators deploying eduVPN can choose to enable WireGuard and/or OpenVPN.
This paper only considers WireGuard, more work is necessary to protect OpenVPN
connections.

9.4 Formal verification

A formal verification of a protocol would give more confidence in the security of that
protocol. WireGuard has been formally verified using Tamarin [29], the same should be
done for the protocols in this paper.
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9.5 Active MiTM by quantum computer

The protocol in this paper does not protect against an active MiTM by a quantum
computer. Further research should be done to protect against such an attack. By the
time a quantum computer can break currently used cryptography, a new version of TLS
might be post-quantum, which can then replace the key-exchange mechanism presented
in this paper.
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